Excel Калькуляторы для металлических конструкций. Расчет стальной колонны Как посчитать момент стойки на изгиб

Вычисление усилий в стойках производят с учетом приложенных к стойке нагрузок.

Средние стойки

Средние стойки каркаса здания работают и рассчитываются как центрально сжатые элементы на действие наибольшего сжимающего усилия N от собственного веса всех конструкций покрытия (G) и снеговой нагрузки и снеговой нагрузки (Рсн ).

Рисунок 8 – Нагрузки на среднюю стойку

Расчет центрально сжатых средних стоек производят:

а) на прочность

где - расчетное сопротивление древесины сжатию вдоль волокон;

Площадь нетто поперечного сечения элемента;

б) на устойчивость

где – коэффициент продольного изгиба;

– расчетная площадь поперечного сечения элемента;

Нагрузки собираются с площади покрытия по плану, приходящейся на одну среднюю стойку ().

Рисунок 9 – Грузовые площади средней и крайней колонн

Крайние стойки

Крайняя стойка находится под действием продольных по отношению к оси стойки нагрузок (G и Рсн ), которые собираются с площади и поперечных , и Х. Кроме этого от действия ветра возникает продольная сила .

Рисунок 10 – Нагрузки на крайнюю стойку

G – нагрузка от собственного веса конструкций покрытия;

Х – горизонтальная сосредоточенная сила, приложенная в точке примыкания ригеля к стойке.

В случае жесткой заделки стоек для однопролетной рамы:

Рисунок 11 – Схема нагрузок при жестком защемлении стоек в фундаменте

где - горизонтальные ветровые нагрузки соответственно от ветра слева и справа, приложенные к стойке в месте примыкания к ней ригеля.

где - высота опорного сечения ригеля или балки.

Влияние сил будет существенно, если ригель на опоре имеет значительную высоту.

В случае шарнирного опирания стойки на фундамент для однопролетной рамы:

Рисунок 12 – Схема нагрузок при шарнирном опирании стоек на фундаменте

Для многопролетных рамных конструкций при ветре слева p 2 и w 2 , а при ветре справа p 1 и w 2 будут равны нулю.

Крайние стойки рассчитываются как сжато-изгибаемые элементы. Значения продольной силы N и изгибающего момента M принимаются для такого сочетания нагрузок, при котором возникают наибольшие сжимающие напряжения.


1) 0.9(G + P c + ветер слева)

2) 0.9(G + P c + ветер справа)

Для стойки, входящей в состав рамы, максимальный изгибающий момент берут как max из вычисленных для случая ветра слева М л и справа М пр:


где е – эксцентриситет приложения продольной силы N, которая включает наиболее неблагоприятное сочетание нагрузок G, P c , P b – каждая со своим знаком.

Эксцентриситет для стоек с постоянной высотой сечения равен нулю (е = 0), а для стоек с переменной высотой сечения берется как разность между геометрической осью опорного сечения и осью приложения продольной силы.

Расчет сжато – изогнутых крайних стоек производится:

а) на прочность:

б) на устойчивость плоской формы изгиба при отсутствии закрепления или при расчетной длине между точками закрепления l p > 70b 2 /n по формуле:

Геометрические характеристики, входящие в формулы, вычисляются в опорном сечении. Из плоскости рамы стойки рассчитывают как центрально сжатый элемент.

Расчет сжатых и сжато-изогнутых составного сечения производится по приведенным выше формулам, однако при вычислении коэффициентов φ и ξ в этих формулах учитывается увеличение гибкости стойки за счет податливости связей, соединяющих ветви. Эта увеличенная гибкость названа приведенной гибкостью λ n .

Расчет решетчатых стоек можно свести к расчету ферм. При этом ветровая равномерно распределенная нагрузка сводится к сосредоточенным грузам в узлах фермы. Считается, что вертикальные силы G, P c , P b воспринимаются только поясами стойки.

Металлические конструкции тема сложная, крайне ответственная. Даже небольшая ошибка может стоить сотни тысяч и миллионы рублей. В некоторых случаях ценой ошибки может стать жизнь людей на стройке, а так же в процессе эксплуатации. Так, что проверять и перепроверять расчеты — нужно и важно.

Использование Эксель для решения расчетных задач — дело с одной стороны не новое, но при этом не совсем привычное. Однако, у Эксель расчетов есть ряд неоспоримых преимуществ:

  • Открытость — каждый такой расчет можно разобрать по косточкам.
  • Доступность — сами файлы существуют в общем доступе, пишутся разработчиками МК под свои нужды.
  • Удобство — практически любой пользователь ПК способен работать с программами из пакета MS Office, тогда как специализированные конструкторские решения — дороги, и кроме того требуют серьезных усилий для своего освоения.

Не стоит их считать панацеей. Такие расчеты позволяют решать узкие и относительно простые конструкторские задачи. Но они не учитывают работы конструкции как целого. В ряде простых случаев могут спасти много времени:

  • Расчет балки на изгиб
  • Расчет балки на изгиб онлайн
  • Проверить расчет прочности и устойчивости колонны.
  • Проверить подбор сечения стержня.

Универсальный расчетный файл МК (EXCEL)

Таблица для подбора сечений металлоконструкций, по 5 различным пунктам СП 16.13330.2011
Собственно с помощью этой программы можно выполнить следующие расчеты:

  • расчет однопролетной шарнирной балки.
  • расчет центрально сжаты элементов (колонн).
  • расчет растянутых элементов.
  • расчет внецентренно-сжатых или сжато-изгибаемых элементов.

Версия Excel должна быть не ниже 2010. Чтобы увидеть инструкцию, нажмите на плюс в верхнем левом углу экрана.

МЕТАЛЛИКА

Программа представляет из себя книгу EXCEL с поддержкой макросов.
И предназначена для расчета стальных конструкций согласно
СП16 13330.2013 «Стальные конструкции»

Подбор и расчет прогонов

Подбор прогона — задача лишь на первый взгляд тривиальная. Шаг прогонов и их размер зависят от многих параметров. И хорошо бы иметь под рукой соответствующий расчет. Собственно об этом и рассказывает статья обязательная к ознакомлению:

  • расчет прогона без тяжей
  • расчет прогона с одним тяжем
  • расчет прогона с двумя тяжами
  • расчет прогона с учетом бимомента:

Но есть небольшая ложка дегтя — судя по всему в файле имеются ошибки в расчетной части.

Расчет моментов инерции сечения в таблицы excel

Если вам надо быстро посчитать момент инерции составного сечения, или нет возможности определить ГОСТ по которому сделаны металлоконструкции, тогда вам на помощь придет этот калькулятор. Внизу таблицы небольшое пояснение. В целом работа проста — выбираем подходящее сечение, задаем размеры этих сечений, получаем основные параметры сечения:

  • Моменты инерции сечения
  • Моменты сопротивления сечения
  • Радиус инерции сечения
  • Площадь сечения
  • Статического момента
  • Расстояния до центра тяжести сечения.

В таблице реализованы расчеты для следующих типов сечений:

  • труба
  • прямоугольник
  • двутавр
  • швеллер
  • прямоугольная труба
  • треугольник

Колонна — это вертикальный элемент несущей конструкции здания, которая передает нагрузки от вышерасположенных конструкций на фундамент.

При расчете стальных колонн необходимо руководствоваться СП 16.13330 «Стальные конструкции».

Для стальной колонны обычно используют двутавр, трубу, квадратный профиль, составное сечение из швеллеров, уголков, листов.

Для центрально-сжатых колонн оптимально использовать трубу или квадратный профиль — они экономны по массе металла и имеют красивый эстетический вид, однако внутренние полости нельзя окрасить, поэтому данный профиль должен быть герметично.

Широко распространено применение широкополочного двутавра для колонн — при защемлении колонны в одной плоскости данный вид профиля оптимален.

Большое значение влияет способ закрепления колонны в фундаменте. Колонна может иметь шарнирное крепление, жесткое в одной плоскости и шарнирное в другой или жесткое в 2-х плоскостях. Выбор крепления зависит от конструктива здания и имеет больше значение при расчете т.к. от способа крепления зависит расчетная длина колонны.

Также необходимо учитывать способ крепления прогонов, стеновых панелей, балки или фермы на колонну, если нагрузка передается сбоку колонны, то необходимо учитывать эксцентриситет.

При защемлении колонны в фундаменте и жестком креплении балки к колонне расчетная длина равна 0,5l, однако в расчете обычно считают 0,7l т.к. балка под действием нагрузки изгибается и полного защемления нет.

На практике отдельно колонну не считают, а моделируют в программе раму или 3-х мерную модель здания, нагружают ее и рассчитывают колонну в сборке и подбирают необходимый профиль, но в программах бывает трудно учесть ослабление сечения отверстиями от болтов, поэтому бывает необходимо проверять сечение вручную.

Чтобы рассчитать колонну нам необходимо знать максимальные сжимающие/растягивающие напряжения и моменты, возникающие в ключевых сечениях, для этого строят эпюры напряжения. В данном обзоре мы рассмотрим только прочностной расчет колонны без построения эпюр.

Расчет колонны производим по следующим параметрам:

1. Прочность при центральном растяжении/сжатии

2. Устойчивость при центральном сжатии (в 2-х плоскостях)

3. Прочность при совместном действии продольной силы и изгибающих моментов

4. Проверка предельной гибкости стержня (в 2-х плоскостях)

1. Прочность при центральном растяжении/сжатии

Согласно СП 16.13330 п. 7.1.1 расчет на прочность элементов из стали с нормативным сопротивлением R yn ≤ 440 Н/мм2 при центральном растяжении или сжатии силой N следует выполнять по формуле

A n — площадь поперечного сечения профиля нетто, т.е. с учетом ослабления его отверстиями;

R y — расчетное сопротивление стали проката (зависит от марки стали см. Таблицу В.5 СП 16.13330);

γ с — коэффициент условий работы (см. Таблицу 1 СП 16.13330).

По этой формуле можно вычислить минимально-необходимую площадь сечения профиля и задать профиль. В дальнейшем в проверочных расчетах подбор сечения колонны можно будет сделать только методом подбора сечения, поэтому здесь мы можем задать отправную точку, меньше которой сечение быть не может.

2. Устойчивость при центральном сжатии

Расчет на устойчивость производится согласно СП 16.13330 п. 7.1.3 по формуле

A — площадь поперечного сечения профиля брутто, т.е.без учета ослабления его отверстиями;

R

γ

φ — коэффициент устойчивости при центральном сжатии.

Как видим эта формула очень напоминает предыдущую, но здесь появляется коэффициент φ , чтобы его вычислить нам вначале потребуется вычислить условную гибкость стержня λ (обозначается с чертой сверху).

где R y — расчетно сопротивление стали;

E — модуль упругости;

λ — гибкость стержня, вычисляемая по формуле:

где l ef — расчетная длина стержня;

i — радиус инерции сечения.

Расчетные длины l ef колонн (стоек) постоянного сечения или отдельных участков ступенчатых колонн согласно СП 16.13330 п. 10.3.1 следует определять по формуле

где l — длина колонны;

μ — коэффициент расчетной длины.

Коэффициенты расчетной длины μ колонн (стоек) постоянного сечения следует определять в зависимости от условий закрепления их концов и вида нагрузки. Для некоторых случаев закрепления концов и вида нагрузки значения μ приведены в следующей таблице:

Радиус инерции сечения можно найти в соответствующем ГОСТ-е на профиль, т.е. предварительно профиль должен быть уже задан и расчет сводится к перебору сечений.

Т.к. радиус инерции в 2-х плоскостях для большинства профилей имеет разные значения на 2-х плоскостей (одинаковые значения имеют только труба и квадратный профиль) и закрепление может быть разным, а следственно и расчетные длины тоже могут быть разные, то расчет на устойчивость необходимо произвести для 2-х плоскостей.

Итак теперь у нас есть все данные чтобы рассчитать условную гибкость.

Если предельная гибкость больше или равна 0,4, то коэффициент устойчивости φ вычисляется по формуле:

значение коэффициента δ следует вычислить по формуле:

коэффициенты α и β смотрите в таблице

Значения коэффициента φ , вычисленные по этой формуле, следует принимать не более (7,6/ λ 2) при значениях условной гибкости свыше 3,8; 4,4 и 5,8 для типов сечений соответственно а, b и с.

При значениях λ < 0,4 для всех типов сечений допускается принимать φ = 1.

Значения коэффициента φ приведены в приложении Д СП 16.13330.

Теперь когда все исходные данные известны производим расчет по формуле, представленной вначале:

Как уже было сказано выше, необходимо сделать 2-а расчета для 2-х плоскостей. Если расчет не удовлетворяет условию, то подбираем новый профиль с более большим значением радиуса инерции сечения. Также можно изменить расчетную схему, например изменив шарнирную заделку на жесткую или закрепив связями колонну в пролете можно уменьшить расчетную длину стержня.

Сжатые элементы со сплошными стенками открытого П-образного сечения рекомендуется укреплять планками или решеткой. Если планки отсутствуют, то устойчивость следует проверять на устойчивость при изгибно-крутильной форме потери устойчивости согласно п.7.1.5 СП 16.13330.

3. Прочность при совместном действии продольной силы и изгибающих моментов

Как правило колонна нагружена не только осевой сжимающей нагрузкой, но и изгибающем моментом, например от ветра. Момент также образуется если вертикальная нагрузка приложена не по центру колонны, а сбоку. В этом случае необходимо сделать проверочный расчет согласно п. 9.1.1 СП 16.13330 по формуле

где N — продольная сжимающая сила;

A n — площадь сечения нетто (с учетом ослабления отверстиями);

R y — расчетное сопротивление стали;

γ с — коэффициент условий работы (см. Таблицу 1 СП 16.13330);

n, Сx и Сy — коэффициенты принимаемые по таблице Е.1 СП 16.13330

Mx и My — моменты относительно осей X-X и Y-Y;

W xn,min и W yn,min — моменты сопротивления сечения относительно осей X-X и Y-Y (можно найти в ГОСТ-е на профиль или в справочнике);

B — бимомент, в СНиП II-23-81* этого параметра не было в расчетах, этот параметр ввели для учета депланации;

W ω,min – секторальный момент сопротивления сечения.

Если с первыми 3-мя составляющими вопросов быть не должно, то учет бимомента вызывает некоторые трудности.

Бимомент характеризует изменения, вносимые в линейные зоны распределения напряжений депланации сечения и, по сути, является парой моментов, направленных в противоположные стороны

Стоит отметить, что многие программы не могут рассчитать бимомент, в том числе и SCAD его не учитывает.

4. Проверка предельной гибкости стержня

Гибкости сжатых элементов λ = lef / i, как правило, не должны превышать предельных значений λ u, приведенных в таблице

Коэффициент α в данной формуле это коэффициент использования профиля, согласно расчету на устойчивость при центральном сжатии.

Также как и расчет на устойчивость данный расчет нужно сделать для 2-х плоскостей.

В случае если профиль не подходит необходимо изменить сечение увеличив радиус инерции сечения или изменив расчетную схему (изменить закрепления или закрепить связями чтобы уменьшить расчетную длину).

Если критическим фактором является предельная гибкость, то марку стали можно взять наименьшую т.к. на предельную гибкость марка стали не влияет. Оптимальный вариант можно вычислить методом подбора.

Posted in Tagged ,

Поперечник здания (рис. 5) один раз статически неопределим. Неопределимость раскрываем, исходя из условия одинаковой жесткости левой и правой стоек и одинаковой величины горизонтальных перемещений шарнирного конца стоек.

Рис. 5. Расчетная схема рамы

5.1. Определение геометрических характеристик

1. Высота сечения стойки
. Примем
.

2. Ширина сечения стойки принимается по сортаменту с учетом острожки
мм .

3. Площадь сечения
.

Момент сопротивления сечении
.

Статический момент
.

Момент инерции сечения
.

Радиус инерции сечения
.

5.2. Сбор нагрузки

а) горизонтальные нагрузки

Погонные ветровые нагрузки

, (Н/м)

,

где - коэффициент, учитывающий значение ветрового давления по высоте (приложение табл. 8);

- аэродинамические коэффициенты (при
м принять
;
);

- коэффициент надежности по нагрузке;

- нормативное значение ветрового давления (по заданию).

Сосредоточенные силы от ветровой нагрузки на уровне верха стойки:

,
,

где - опорная часть фермы.

б) вертикальные нагрузки

Нагрузки соберем в табличной форме.

Таблица 5

Сбор нагрузки на стойку, Н

Наименование

Постоянная

1. От панели покрытия

2. От несущей конструкции

3. Собственный вес стойки (ориентировочно)

Всего:

Временная

4. Снеговая

Примечание:

1. Нагрузка от панели покрытия определяется по таблице 1

,
.

2. Нагрузки от балки определяется


.

3. Собственный вес арки
определяется:

Верхний пояс
;

Нижний пояс
;

Стойки.

Для получения расчетной нагрузки элементы арки умножаются на , соответствующие металлу или дереву.

,
,
.

Неизвестная
:
.

Изгибающий момент в основании стойки
.

Поперечная сила
.

5.3. Проверочный расчет

В плоскости изгиба

1. Проверка по нормальным напряжениям

,

где - коэффициент, учитывающий дополнительный момент от продольной силы.

;
,

где - коэффициент закрепления (принять 2,2);
.

Недонапряжение не должно превышать 20%. Однако, если приняты минимальные размеры стойки и
, то недонапряжение может превышать 20%.

2. Проверка опорной части на скалывание при изгибе

.

3. Проверка устойчивости плоской формы деформирования:

,

где
;
(табл. 2 прил. 4 ).

Из плоскости изгиба

4. Проверка на устойчивость

,

где
, если
,
;

- расстояние между связями по длине стойки. При отсутствии связей между стойками за расчетную длину принимается полная длина стойки
.

5.4. Расчет прикрепления стойки к фундаменту

Выпишем нагрузки
и
из таблицы 5. Конструкция прикрепления стойки к фундаменту приведена на рис. 6.


где
.

Рис. 6. Конструкция прикрепления стойки к фундаменту

2. Напряжения сжатия
, (Па)

где
.

3. Размеры сжатой и растянутой зон
.

4. Размеры и:

;
.

5. Максимальное усилие растяжения в анкерах

, (Н)

6. Требуемая площадь анкерных болтов

,

где
- коэффициент, учитывающий ослабление резьбой;

- коэффициент, учитывающий концентрацию напряжений в резьбе;

- коэффициент, учитывающий неравномерность работы двух анкеров .

7. Требуемый диаметр анкера
.

Принимаем диаметр по сортаменту (приложение табл. 9).

8. Для принятого диаметра анкера потребуется отверстие в траверсе
мм.

9. Ширина траверсы (уголка) рис. 4 должна быть не менее
, т.е.
.

Примем равнобокий уголок по сортаменту (приложение табл. 10).

11. Величина распределительной нагрузки на участке ширины стойки (рис. 7 б).

.

12. Изгибающий момент
,

где
.

13. Требуемый момент сопротивления
,

где - расчетное сопротивление стали принято 240 МПа.

14. Для предварительно принятого уголка
.

Если это условие выполняется переходим к проверке напряжения, если нет – возвращается к пункту 10 и принимаем больший уголок.

15. Нормальные напряжения
,

где
- коэффициент условий работы.

16. Прогиб траверсы
,

где
Па – модуль упругости стали;

- предельный прогиб (принять ).

17. Выберем диаметр горизонтальных болтов из условия их расстановки поперек волокон в два ряда по ширине стойки
, где
- расстояния по между осями болтов. Если принимаем болты металлические, то
,
.

Примем диаметр горизонтальных болтов по приложению табл. 10.

18. Наименьшая несущая способность болта:

а) по условию смятия крайнего элемента
.

б) по условию изгиба
,

где
- приложение табл. 11.

19. Количество горизонтальных болтов
,

где
- наименьшая несущая способность из п. 18;
- количество срезов.

Примем число болтов четное число, т.к. их расставляем в два ряда.

20. Длина накладки
,

где - расстояние между осями болтов вдоль волокон. Если болты металлические
;

- число расстояний по длине накладки.

Высота стойки и длина плеча приложения силы P выбирается конструктивно, согласно чертежу. Возьмем сечение стойки как 2Ш. Исходя из соотношения h 0 /l=10 и h/b=1,5-2 выбираем сечение не больше h=450мм и b=300мм.

Рисунок 1 – Схема нагружения стойки и поперечное сечение.

Общая масса конструкции составляет:

m= 20,1+5+0,43+3+3,2+3 = 34,73 тонн

Вес приходящий на одну из 8 стоек составляет:

P = 34,73 / 8 = 4,34 тонн = 43400Н – давление на одну стойку.

Сила действует не в центре сечения, поэтому она вызывает момент, равный:

Мх = P*L; Мх = 43400 * 5000 = 217000000 (Н*мм)

Рассмотрим стойку коробчатого сечения, сваренную из двух пластин

Определение эксцентриситетов:

Если эксцентриситет т х имеет значение от 0,1 до 5 - внецентренно сжатой (растянутой) стойкой; если т от 5 до 20, то растяжение или сжатие балки необходимо учитывать в расчете.

т х =2,5 - внецентренно сжатая (растянутая) стойка.

Определение размера сечения стойки:

Основной нагрузкой для стойки является продольная сила. Поэто­му для выбора сечения используют расчет на прочность при растяже­нии (сжатии):

(9)

Из этого уравнения находят требуемую площадь поперечного сечения

,мм 2 (10)

Допускаемое напряжение [σ] при работе на выносливость зависит от марки стали, концентрации напряжений в сечении, числа циклов нагружения и асимметрии цикла. В СНиП допускаемое напряжение при работе на выносливость определяют по формуле

(11)

Расчетное сопротивление R U зависит от концентрации напряжения и от предела текучести материала. Концентрация напряжении в свар­ных соединениях чаще всего обусловлена сварными швами. Значение коэффициента концентрации зависит от формы, размеров и расположения швов. Чем выше концентрация напряжений, тем ниже допуска­емое напряжение.

Наиболее нагруженное сечение проектируемой в работе стержневой конструкции расположено вблизи места ее прикрепления к стенке. Прикрепление лобовыми угловыми швами соответствует 6-й группе, следовательно, R U = 45 МПа.

Для 6-й группы, при п = 10 -6 , α = 1,63;

Коэффициент у отражает зависимость допускаемых напряжений от показателя асимметрии цикла р, равного отношению минимального напряжения за цикл к максимальному, т. е.

-1≤ρ<1,

а также от знака напряжений. Растяжение способствует, а сжатие препятствует возникновению трещин, поэтому значение γ при одинаковых ρ зависит от знака σ мах. В случае пульсирующего нагружения, когда σ min = 0, ρ=0 при сжатии γ=2 при растяжении γ= 1,67.

При ρ→ ∞ γ→∞. При этом допускаемое напряжение [σ] становится очень большим. Это означает, что опасность усталостного разрушения уменьшается, но не означает что прочность обеспечена, так как возможно разрушение при первом нагружении. Поэтому при определении [σ]необходимо учесть условия статической прочности и устойчивости.

При статическом растяжении (без изгиба)

[σ] = R у. (12)

Значение расчетного сопротивления R у по пределу текучести опре­деляют по формуле

(13)

где γ м - коэффициент надежности по материалу.

Для 09Г2С σ Т = 325 МПа, γ т = 1,25

При статическом сжатии допускаемое напряжение снижают в свя­зи с опасностью потери устойчивости:

где 0 < φ < 1. Коэффициент φ зависит от гибкости и относительного эксцентриситета. Его точное значение может быть найдено только после определения размеров сечения. Для ориентировочного выбора Атрпо формуле следует задаться значением φ. При небольшом эксцентриситете приложения нагрузки можно принять φ = 0,6. Такой коэффициент означает, что прочность стержня при сжатии из-за по­тери устойчивости снижается до 60% от прочности при растяжении.

Подставляем данные в формулу:

Из двух значений [ σ] выбираем наименьшее. И в дальнейшем по нему будет вестись расчет.

Допускаемое напряжение

Поставляем данные в формулу:

Так как 295,8мм 2 крайне малая площадь сечения, исходя из конструктивных размеров и величины момента увеличиваем до

Номер швеллера подберем по площади.

Минимальная площадь швеллера должна составлять – 60 см 2

Номер швеллера – 40П. Имеет параметры:

h=400 мм; b=115мм; s=8мм; t=13,5мм; F=18,1 см 2 ;

Получаем площадь сечения стойки, состоящую из 2 швеллеров – 61,5 см 2 .

Подставим данные в формулу 12 и рассчитаем напряжения еще раз:

=146,7 МПа

Действующие напряжения в сечении меньше предельных напряжений для металла. Это означает, что материал конструкции выдерживает приложенную нагрузку.

Проверочный расчет общей устойчивости стоек.

Такая проверка требуется только при действии сжимающих про­дольных сил. Если силы приложены к центру сечения (Мх=Му=0),тоснижение статической прочности стойки за счет потери устойчивости оценивают коэффициентом φ, зависящим от гибкости стойки.

Гибкость стойки относительно материальной оси (т. е. оси, пересе­кающей элементы сечения) определяют по формуле:

(15)

где – длина полуволны изогнутой оси стойки,

μ – коэффициент зависящий от условия закрепления; при консоли = 2;

i min - радиус инерции, находится по формуле:

(16)

Подставляем данные в формулу 20 и 21:

Расчет устойчивости проводят по формуле:

(17)

Коэффициент φ у определяют так же как при центральном сжатии, по табл. 6 в зависимости от гибкости стойки λ у (λ уо) при изгибе вокруг оси у. Коэффициент с учитывает yуменьшение устойчивости от действия момента М х.



Поделиться