Как проверить трехфазный двигатель тестером. Как проверить якорь электродвигателя Как прозвонить трехфазный электродвигатель

Модификации электродвигателей друг с другом различаются, равно как и их дефекты. Не каждая неисправность может быть диагностирована с помощью тестера, но в большинстве случаев – вполне возможно.

Ремонт начинают со зрительного осмотра: есть ли повреждённые части, не залит ли водой электродвигатель, не появился ли запах горелой изоляции и так далее. Обмотка в асинхронном двигателе может сгореть из-за короткого замыкания между двумя соседними витками. Агрегат перегревается из-за перегрузок, возникновения больших токов.

Нередко обгоревшие обмотки видны при визуальном осмотре, и в этом случае любые измерения будут лишними. Когда никаких шансов на исправление нет, нужно удалить и заменить обмотки на новые. Иногда требуется более тщательно проверить электродвигатель.

Для начала необходимо изучить конфигурацию двигателя, например, какие обмотки используются. Все вращающиеся машины имеют две части: статор и ротор.

В электродвигателях постоянного тока имеются:

  • обмотка возбуждения, имеющая важное значение для производства магнитного поля. Она позволяет преобразовать энергию из механической в электрическую и наоборот;
  • обмотка якоря, несущая нагрузку току и регулирующая переменный ток для уменьшения вихревых потерь.

Двигатель переменного тока, обычно состоит из двух частей:

  1. статора, имеющего катушку для создания вращающегося магнитного поля;
  2. ротора, прикрепленного к выходному валу и предназначенного для производства второго вращающегося магнитного поля.

Как проверить цельность обмоток мотора?

При помощи мультиметра и нескольких подручных средств можно проверить:

  • асинхронные движки одно-, трёхфазные;

  • коллекторные электродвигатели постоянного, переменного тока;

  • асинхронные моторы с короткозамкнутым, фазным ротором.

Тестирование обмоток катушки

Существует простой тест, используемый для проверки состояния катушки мотора. Для чего измеряется сопротивление обмоток, которое варьируется в зависимости от длины, толщины и материала провода. Если сопротивление слишком низкое, это указывает на короткое замыкание изоляции между витками.

Можно использовать мультиметр, но лучше проверить это с мегомметром, потому что на нём используется более высокое напряжение при проверке сопротивления. Это исключает ложные показания, вызванные индуктивностью катушки мотора.

Тест показывает качество изоляции провода, которое определяется по сопротивлению измеряемой детали системы. Полученные результаты сверяются с табличными данными допустимых сопротивлений изоляции кабеля до 1 кВ, изложенными в правилах устройства электроустановок (ПУЭ). По результатам проверки может быть предсказан сбой, прежде чем он произойдёт на самом деле. Это позволяет в производственном цеху осуществить ремонт или замену оборудования во время работы.

Как проверяется катушка электродвигателя мультиметром можно посмотреть на видео:

Диагностика якоря

Проверить исправность электродвигателя тоже можно с помощью цифрового специального устройства проверки якорей Э236. Для этого помещают якорь на призму приборчика, который потом подключают к сети.

Процесс диагностики включает в себя следующие шаги:

  1. располагают ножовочное полотно параллельно пазу исследуемой детали;
  2. удерживая одной рукой металл, другой медленно проворачивают якорь.

При наличии межвиткового замыкания полотно, близкорасположенное к пазу, начнет вибрировать и притягиваться к механизму.

Наглядная демонстрация проверки якоря показана по видео:

Как прозвонить электродвигатель на стенде

Чтобы оперативно прозвонить обрыв в цепях движка, можно воспользоваться рабочим стендом с источником постоянного тока, инвертором, цифровым вольтметром, компаратором напряжений, световым индикатором и зуммером обрыва.

На нём же можно определить междувитковое замыкание.

Заключение

Далеко не всегда имеется возможность приобрести дорогостоящие аппараты специального назначения. Поэтому важно знать, как проверить двигатель простым мультиметром, очень нужным в хозяйстве электроизмерительным прибором. Он заменяет множество отдельных инструментов, необходимых для проверки цепей.

Посмотреть видео урок проверки статора на обрыв можно здесь:

Многие приборы, с которыми имеет дело человек, в своей конструкции предусматривают наличие электрического двигателя. В процессе работы, в нем могут возникать неисправности по различным причинам, которые придется выявлять и устранять.

Электрический двигатель занимается преобразованием электрической энергии в механическую, с целью приведения в движение различных механизмов и машин. Преобладающее большинство электрических двигателей являются двигателями вращательного движения.

Конструкция мотора

По своей механической конструкции любой электродвигатель складывается из двух элементов:

  • статора – неподвижной части мотора (индуктор). Включает в себя станину и магнитные полюса. В своей комплектации может включать постоянные магниты, электромагниты с обмотками, короткозамкнутые обмотки. Его назначение – создать в системе магнитный поток;
  • ротор – начинает вращение после подачи напряжения к обмоткам двигателя (якорь). Он представляет собой катушки с токопроводящими обмотками. Они способствуют устранению неравномерности крутящего момента и снижению коммутируемого тока, что приводит к нормальному взаимодействию магнитных полей индуктора и ротора.

Также имеется щеточно-коллекторный узел, который выступает между ротором и статором связующим звеном. В нем сконцентрированы все выводы роторных катушек. Этот участок является переключателем тока со скользящими контактами. Дополнительно выполняет функцию датчика углового положения ротора.

Существуют несколько вариантов обмотки катушки медной проволокой:

  • катушки только на роторе;
  • только на статоре;
  • обмотка на подвижной и неподвижной частях.

Катушка – это несколько витков, уложенных соответствующими сторонами в два паза и соединенные между собой последовательно. А обмоткой называют несколько катушечных групп, уложенных в пазы и соединенных по определенной схеме.

У большинства электродвигателей ротор размещен внутри статора.

Щетки являются неподвижным контактом, который подводит ток к ротору. Задачей щеточно-коллекторного узла является обеспечение вращения ротора в одном и том же направлении.

Важно! Самостоятельный ремонт электродвигателя неквалифицированными работниками, может закончиться трагически.

Трудности диагностирования

Целью любой диагностики является обнаружение и профилактика неисправностей. Что касается диагностики обмотки двигателя, то самой сложной задачей является добраться непосредственно до предмета диагностирования. Чтобы это произошло, понадобится не только демонтировать двигатель, но и разобрать его.

Учитывая то, что ротор находится внутри станины, то в процессе снимается и ротор, и подшипники. А в случае выявления сгоревшей обмотки статора, ремонт будет не только объемным, но и очень дорогим, так как не каждый специалист возьмется за перемотку двигателя.

Коммутирующая аппаратура

Такая аппаратура служит для управления агрегатами электрооборудования. В зависимости от способа управления они подразделяются на:

  • прямое – для коммутации цепей с током не больше 35 А. К ним относятся выключатели, переключатели и кнопки;
  • дистанционное – состоит из контактной группы, электромагнита и рычажнопружинного механизма;
  • автоматическое;
  • программное – происходит автоматическое включение, выключение и переключение.

По принципу своей работы выключатели и переключатели могут быть:

  • перекидными – имеют фиксированное положение контактов и рукояти управления, чтобы вернуть в исходное положение, понадобиться приложить усилие;
  • нажимными – процесс обеспечивается кинематической схемой самовозврата.

В зависимости от токовой нагрузки в цепи, коммутирующие устройства подразделяются на:

  • контакторы – до 600 А.
  • Подробности диагностики электрической части

    Чтобы найти поврежденный участок изоляции обмотки понадобится, разъединить фазные обмотки и измерить сопротивление на каждой обмотке. Проверку нужно начинать от магнитопровода, в результате чего выявляется участок с покоробленной изоляцией. Чтобы обнаружить такие места, можно применить несколько подходов:

    • измерить напряжение между концов обмотки и магнитопровода;
    • определить направление тока в частях обмотки;
    • делить обмотку на части;
    • способ «прожигания».

    Первый способ предусматривает подачу пониженного напряжения (переменного либо постоянного) на фазную обмотку мотора с покоробленной изоляцией. Затем выполняют замеры напряжения между концами магнитопровода и обмотки. Соотношение полученных значений даст понимание о нахождении места повреждения.

    При втором способе на концы фазной обмотки и магнитопровод подают постоянное напряжение. Подключают реостат, для того чтобы регулировать ток. Направления токов в обоих концах обмотки будут обратными. К концам каждой катушечной группы дотрагиваются двумя проводами милливольтметра. Стрелка прибора будет постоянно отклоняться в одну сторону до тех пор, пока не прикоснется концами к группе с покоробленной изоляцией. После этого участка стрелка прибора будет отклоняться в противоположную сторону.

    Третий метод подразумевает разделение фазовой обмотки соединенной с магнитопроводом путем распайки междукатушечных соединений. Затем занимаются поиском покоробленной изоляции с помощью мегомметра или контрольной лампочки. Такие разделения делают до тех пор, пока не найдется неисправная катушка.

    А вот если фазную обмотку с нарушенной изоляцией и магнитопровод присоединить к источнику пониженного напряжения (сварочному генератору или трансформатору), то постепенно нагреваясь в проблемном месте начнется дымление, а временами искрение (изоляция «прожигается»).

    Диагностика асинхронных моторов

    Для того что двигатель работал долго, следует обращать внимание на шум подшипников во время работы. Избегать свистящих, хрустящих или царапающих звуков. Они говорят о том, что смазки недостаточно и требуется ее восполнить. Повреждение обоймы, шариков, сепараторов отражаются глухими ударами.

    Если наблюдается перегрев или нетипичный шум в работе подшипников, то следует обязательно их разобрать и осмотреть. Со всех деталей удаляется старая смазка и происходит их промывание бензином.

    Перед тем как установить новые подшипники, их прогревают в масле, для того чтобы новая смазка заполнила их рабочую часть на треть.

    Следует систематически проверять контактные кольца. Если обнаружены появления ржавчины, то поверхность зачищается мягкой наждачной бумагой, с последующим протиранием керосином.

    При моторе постоянного тока

    Чтобы выполнить проверку такого двигателя, делают замеры сопротивления его обмоток. Полученные результаты дадут возможность судить о техсостоянии контактных соединений обмоток.

    С этой целью используются такие методы:

    • амперметра-вольтметра – применяется двухконтактный щуп с пружинами в изоляционной рукоятке. Этим способом замеряют сопротивления последовательной обмотки возбуждения;
    • одинарного или двойного моста и микроомметром;

    Проверка прочности изоляции и измерение ее сопротивления выполняются также, как и у асинхронного двигателя.

    Проверка мотора прямого привода

    Существует два варианта проверки:

    • подать напряжение на стартерную и роторную обмотку двигателя, предварительно подсоединив поочередно эти элементы. Недостаток метода в том, что даже если он начнет вращаться, то это не говорит о его исправном функционировании;
    • требуется взять специальное оборудование – автотрансформатор мощностью от 500 ватт. Этот способ более безопасен, потому что дает возможность регулировать скорость оборотов.

    Последовательность диагностики

    При осуществлении диагностики совершаются такие операции:

    • электрическая машина отсоединяется от сети;
    • щетками производится очищение от пыли и грязи;
    • сжатым воздухом из компрессора обдуваются все элементы;
    • осматривается щеточно-коллекторный механизм на поломки щеткодержателя и сколов на щетках, износ щеток, царапины и выбоины на поверхности коллектора;
    • для обнаружения поломок в электрической части понадобиться прозвонить обмотку электродвигателя мультиметром. Возможны обрывы электрической цепи, замыкание отдельных цепей между собой, витковые замыкания;
    • замена неисправных участков обмотки;
    • осмотр подшипников и в случае необходимости заменить на новые;
    • сборка двигателя;
    • обследование вращающих узлов на наличие ровной нагрузки на двигатель;
    • испытание на холостом ходу и под нагрузкой.

    Если выбивает защиту?

    Чтобы защитить обмотки электродвигателя от перегрева и токовых перегрузок, подключается электротепловое реле. Мотор подсоединяется к выходным контактам реле. Данное реле внутри состоит из трех биметаллических пластин. Эти пластины взаимодействуют с механизмом подвижной системы, которая принимает участие в схеме защиты мотора через дополнительные контакты.

    Под действием проходящего по пластине тока, она постепенно нагревается и выгибается, чем больший ток пройдет через нее, тем быстрее сработает защита и отключит нагрузку.

    Если при работе электродвигателя отчетливо слышится визг или скрипение, которые отсутствовали на небольших оборотах, то причина очевидно в недостаточном количестве смазки в подшипниках, либо же их сильное загрязнение.

    Также на изношенный подшипник указывает мощная вибрация вала, который вращается по инерции. Возможно, это говорит о дисбалансе колеса вентилятора. Допускается вариант, что у него отломилась одна из лопастей.

    Важно! В случае обнаружения нарушений изоляции обмотки, ремонт двигателя лучше производить в специальных сервисных центрах.

    Если ситуация требует проведения диагностики обмотки электродвигателя, то не имея общих понятий электротехники, желательно доверить эту работу настоящим профессионалам. Этот трудоемкий процесс требует не только навыков в работе, но также использования специальной техники, которая позволит провести качественный ремонт.

    Наладка движков неизменного тока

    Наладку движков неизменного тока делают в последующем объеме: наружный осмотр, измерение сопротивлений обмоток неизменному току, измерение сопротивлений изоляции обмоток относительно корпуса и меж собой, испытание междувитковой изоляции обмотки якоря, пробный запуск.

    Наружный осмотр мотора неизменного тока, как и осмотр асинхронного двигателя , начинают со щитка. На щитке двигателя постоянного тока должны быть указаны последующие данные:

    • наименование либо товарный символ завода-изготовителя,
    • тип машины,
    • заводской номер машины,
    • номинальные данные (мощность, напряжение, ток, частота вращения),
    • метод возбуждения машины,
    • год выпуска,
    • масса и ГОСТ машины.

    Выводы обмотки мотора постоянного тока должны быть накрепко изолированы друг от друга и от корпуса, расстояние меж ними и корпусом должно быть более 12-15 мм. Повышенное внимание при наружном осмотре обращают на коллектор и щеточный механизм (щетки, траверсу и щеткодержатели), потому что их состояние в значимой мере оказывает влияние на коммутацию машины, а как следует, и на устойчивость ее работы.

    При осмотре коллектора убеждаются в отсутствии на рабочей поверхности следов резца, выбоин, пятен лака и краски, также следов нагара от неудовлетворительной работы щеточного механизма. Изоляция меж коллекторными пластинами должна быть выбрана на глубину 1-2 мм, с краев пластинок должна быть снята фаска шириной 0,5-1 мм (зависимо от мощности мотора). Промежутки меж пластинами должны быть совсем чисты - в их не должно быть железных стружек либо опилок, пыли от графитовых щеток, масла, лака и т. п.

    На работу мотора неизменного тока, а в особенности его щеточного механизма, оказывают влияние биение коллектора и его вибрация. Чем выше окружная скорость коллектора, тем меньше величина допустимого биения. Для быстроходных движков максимально допустимая величина биения не должна превосходить 0,02-0,025 мм. Величину амплитуды вибрации определяют индикатором часового типа.

    При проведении измерения наконечник индикатора придавливают к поверхности в том направлении, в каком нужно произвести измерение вибрации. Потому что поверхность коллектора прерывающаяся (чередуются пластинки коллектора и впадины), употребляют отлично притертую щетку, в которую должен упираться наконечник индикатора. Корпус индикатора должен быть укреплен на основании, не подверженном вибрации.

    При измерении стрелка индикатора колеблется с частотой измеряемой вибрации в границах определенного угла, величина которого и оценивается по шкале индикатора в сотых толиках мм. Но этот устройство позволяет определять вибрации при частоте вращения менее 750 об/мин. Для движков, частота вращения которых превосходит 750 об/мин, нужно воспользоваться особыми приборами-виброметрами либо вибрографами, которые позволяют определять либо записывать вибрацию тех либо других узлов машины.

    Биение также определяют при помощи индикатора. Биение коллектора определяют как в прохладном, так и в нагретом состоянии машины. При измерении обращают свое внимание на поведение стрелки индикатора. Плавное движение стрелки показывает на достаточную цилиндричность поверхности, а подергивание стрелки свидетельствует о местных нарушениях цилиндричности поверхности, в особенности небезопасной для щеточного механизма мотора. Измерение биения носит условный нрав, потому что опыт работы оказывает, что есть движки, у каких при малых частотах вращения значения биений значительны, а при номинальной скорости они работают удовлетворительно. Поэтому окончательное заключение о качестве работы коллектора можно дать только после проверки работы мотора под нагрузкой.

    Осматривая механическую часть мотора неизменного тока, следует уделять свое внимание на состояние паек н соединений обмоток, подшипниковых узлов, на равномерность зазора (при разобранном движке). Зазор, измеренный в диаметрально обратных точках меж якорем и главными полюсами мотора, не должен отличаться от среднего значения более чем на 10% при зазорах наименее 3 мм и менее чем на 5% при зазорах более 3 мм.

    После проверки биений и вибраций приступают к регулировке щеточного механизма мотора. Щетки в обоймах должны свободно передвигаться, но не должны пошатываться. Обычный зазор меж щеткой и обоймой в направлении вращения не должен превосходить 0,1- 0,4 мм, в продольном направлении 0,2-0,5 мм.

    Обычное удельное давление щеток на коллектор зависимо от марки материала щетки должно быть более 150-180 г/см2 для графитовых щеток, 220- 250 г/см2 для медно-графитовых. Во избежание неравномерного рассредотачивания тока давление отдельных щеток не должно отличаться от среднего более чем на 10%. Величину удельного давления определяют следующим образом . Между коллектором и щеткой помещают лист тонкой бумаги, к щетке прикрепляют динамометр, а затем, оттягивая динамометром щетку, находят такое положение, когда можно будет свободно вытянуть лист бумаги. Показание динамометра в этот момент соответствует Давлению щетки на коллектор. Удельное давление определяют путем деления показания динамометра на площадь основания щетки.

    Правильная установка щеток является одним из важнейших факторов нормальной работы машины. Щеткодержатели устанавливают таким образом, чтобы щетки стояли строго параллельно пластинам коллектора и расстояния между их сбегающими краями были равны полюсному делению машины с погрешностью не более 2%.

    У двигателей, имеющих несколько траверс, щеткодержатели размещают таким образом, чтобы щетки перекрывали по возможности большую часть длины коллектора (так называемое шахматное расположение). Это позволит участвовать в коммутации всей длине коллектора, что способствует более равномерному его износу. Однако при таком размещении щеток необходимо следить за тем, чтобы щетки не выступали при работе (с учетом разбега вала) за край коллектора. Щетки перед пуском двигателя в ход тщательно притирают к коллектору (рис. 1) стеклянной (но не карборундовой) бумагой с зернами средней крупности. Зерна карборундовой бумаги могут внедриться в тело щетки и затем при работе наносить царапины на коллектор, тем самым ухудшая условия коммутации машины.

    Как проверить коллекторный электродвигатель мультиметром — обмотки статора и ротора

    Читайте так же:

    Электродвигатель постоянного тока. Принцип работы.

    Электродвигатели постоянного тока можно найти во многих портативных бытовых устройствах, автомобилях.

    Прежде чем приступить к проверке правильности включения обмоток, изучают маркировку выводов машины конкретного типа. В двигателях постоянного тока выводы обмоток маркируют согласно ГОСТ 183-66 первыми прописными буквами их наименования с добавлением после них цифры 1 - для начала обмотки и 2 - для ее конца. При наличии в двигателе других обмоток такого же наименования, начала и концы их маркируют цифрами 3-4, 5-6 и т. д. Обозначения выводов могут соответствовать схемам возбуждения и направлениям вращения двигателя, которые приведены на рис. 2.

    Правильность включения обмоток полюсов проверяют для уточнения чередования их полярности. Чередование полярности дополнительных и главных полюсов для любой машины должно быть строго определенным для данного направления вращения машины. При переходе от полюса к полюсу по направлению вращения машины, работающей в режиме двигателя, после каждого главного полюса следует дополнительный полюс той же полярности, например N-п, S-s. Чередование полярности полюсов может быть определено несколькими способами: внешним осмотром, с помощью магнитной стрелки, и с помощью специальной катушки.

    Первый способ применяют в тех случаях, когда направление намотки обмоток можно проследить визуально.

    Рис. 1. Притирание щеток к коллектору: а - неправильно; б - правильно

    Рис. 2. Обозначения выводов обмоток двигателей постоянного тока при различных схемах возбуждения и направлениях вращения

    Зная направление намотки обмотки и пользуясь правилом «буравчика», определяют полярность полюсов. Этот способ удобен для катушек последовательной обмотки возбуждения, направление намотки которой благодаря значительному сечению витков определить очень легко.

    Второй способ применяют в основном для катушек обмоток параллельного возбуждения. Сущность этого способа заключается в следующем. В обмотку двигателя подают ток, подвешивают на нитке магнитную стрелку, полярность концов которой помечена, и подносят ее поочередно к каждому полюсу. В зависимости от полярности полюса стрелка повернется к нему концом противоположной полярности.

    Читайте так же:

    При использовании указанного способа необходимо помнить, что стрелка обладает способностью перемагиичиваться, поэтому опыт необходимо производить как можно быстрее. Способ магнитной стрелки редко применяют для определения полярности обмотки последовательного возбуждения, так как для создания достаточно сильного поля необходимо пропустить через обмотку значительный ток.

    Третий способ определения полярности обмоток применим для любой обмотки, он носит название способа пробной катушки. Катушка может иметь любую форму - торроидальную, прямоугольную, цилиндрическую. Катушку наматывают с возможно большим числом витков из тонкой изолированной медной проволоки на каркас из картона, целлулоида и т. п. Катушку присоединяют к чувствительному гальванометру и прикладывают к поверхности полюса (рис. 3), а затем быстро сдергивают с него и замечают направление отклонения стрелки милливольтметра.

    Соединение обмоток считают правильным, если под каждыми двумя соседними полюсами стрелки прибора отклоняются в разные стороны, при условии, что пробная катушка обращена к полюсам одной и той же стороной. Проверку правильности присоединения обмотки добавочных полюсов по отношению к обмотке якоря производят по схеме, приведенной на рис. 4.

    При замыкании ключа К стрелка милливольтметра будет отклоняться. При правильном включении намагничивающая сила обмотки дополнительных полюсов направлена встречно намагничивающей силе обмотки якоря, поэтому обмотка якоря и обмотка дополнительных полюсов должны включаться встречно, т. е. минус (или плюс) якоря следует соединить с минусом (или с плюсом) обмотки дополнительных полюсов.

    Рис. 3. Определение полярности полюсов двигателей постоянного тока с помощью пробной катушки

    Рис. 4. Схема проверки правильности включения обмотки добавочных полюсов по отношению к обмотке якоря

    Для проверки взаимного включения обмотки дополнительных полюсов и компенсационной обмотки можно использовать схему, приведенную на рис. 5, для небольших по мощности двигателей .

    При нормальней работе двигателя постоянного тока магнитный поток, создаваемый компенсационной обмоткой, должен совпадать по направлению с магнитным потоком обмотки дополнительных полюсов. После определения полярности обмоток компенсационная обмотка и обмотка дополнительных полюсов должны включаться согласованно, т. е. минус одной обмотки следует соединить с плюсом другой.

    Рис. 5. Схема проверки правильности включения обмотки дополнительных полюсов к компенсационной обмотке

    Прежде чем определять полярность щеток и производить необходимые измерения сопротивлений обмоток, устанавливают щетки на нейтраль. Под нейтралью электрического двигателя понимается такое взаимное расположение обмоток главных полюсов и якоря, когда коэффициент трансформации между ними равен нулю. Для установки щеток на нейтраль собирают схему (рис. 6).

    Обмотку возбуждения подключают к источнику питания (батарее) через ключ, а к щеткам якоря подключают чувствительный милливольтметр. При подаче в обмотку возбуждения тока толчком, стрелка милливольтметра отклоняется в ту или иную сторону. При положении щеток строго по нейтрали стрелка прибора отклоняться не будет.

    Диагностика и ремонт якоря стартера в критериях гаража Стартер представляет собой узел, без которого не обходится ни одно тс, так как этот элемент является одним из главных в системе зажигания. Как понятно, нескончаемых деталей не бывает и временами стартерный узел имеет свойство выходить из строя. Как проверить и отремонтировать батарейку в ключе...

    Точность обычных приборов невелика - в лучшем случае 0,5%. Поэтому щетки устанавливают в положение, соответствующее минимальному показанию прибора, и считают, что это нейтраль. Трудность установки щеток на нейтраль заключается в том, что положение нейтрали зависит от положения пластин коллектора.

    Очень часто бывает, что нейтраль, найденная для одного положения якоря, сдвигается при его проворачивании. Поэтому определяют положение нейтрали для двух различных положений вала. Если положение нейтрали оказывается различным для различных положений якоря, то следует выставить щетки в среднем положении между двумя отметками. Точность установки щеток на нейтраль зависит от степени прилегания поверхности щетки к коллектору. Поэтому для получения более точного результата при определении нейтрали двигателя предварительно притирают щетки к коллектору.

    Полярность щеток определяется одним из следующих способов.

    1. К двум точкам коллектора (рис. 7), отстоящим от разноименных щеток на одинаковом расстоянии, присоединяют вольтметр. При подаче возбуждения стрелка вольтметра отклонится в ту или иную сторону. Если стрелка отклонится вправо, то «плюс» находится в точке 1, а «минус» - в точке 2. Ближайшая против направления вращения щетка будет иметь полярность присоединенного зажима прибора.

    2. Через обмотку возбуждения пропускают постоянный ток определенной полярности, к якорю подключают вольтметр и приводят якорь во вращение толчком от руки или с помощью механизма. Стрелка вольтметра при этом отклонится. Направление отклонения стрелки укажет полярность щеток.

    Измерение сопротивления обмоток двигателя постоянного тока является весьма важным элементам проверки двигателей постоянного тока, так как по результатам измерения судят о состоянии контактных соединений обмоток (паек, болтовых, сварных соединений). Измерение сопротивления обмоток двигателя производят одним из следующих методов: амперметра-вольтметра, одинарного или двойного моста и микроомметром. Необходимо помнить о некоторых особенностях измерений сопротивления обмоток двигателей постоянного тока.

    1. Сопротивление последовательной обмотки возбуждения, уравнительной обмотки, обмотки добавочных полюсов невелико (тысячные доли ома), поэтому измерения производят микроомметром или двойным мостом.

    2. Сопротивление обмотки якоря измеряют по методу амперметра-вольтметра с использованием специального двухконтактного щупа с пружинами в изоляционной рукоятке (рис. 8). Измерение проводят следующим образом: к пластинам коллектора неподвижного якоря со снятыми щетками поочередно подводят постоянный ток от хорошо заряженной батареи напряжением 4-6 В. Между пластинами, к которым подводится ток, измеряют падение напряжения с помощью милливольтметра. Искомая величина сопротивления одной ветви якоря

    Рис. 6. Схема проверки правильности установки щеток на нейтраль

    Измерение сопротивления изоляции обмоток относительно корпуса машины и между обмотками производится в целях проверки состояния изоляции и пригодности машины к проведению последующих испытаний. Рекомендуется производить измерение:

    в практически холодном состоянии испытуемой машины - до начала ее испытания по соответствующей программе;

    независимо от температуры обмоток - до и после испытаний изоляции обмоток на электрическую прочность относительно корпуса машины и между обмотками переменным напряжением.

    Измерение сопротивления изоляции обмоток следует проводить: при номинальном напряжении обмотки до 500 В включительно - мегаомметром на 500 В; при номинальном напряжении обмотки свыше 500 В - мегаомметром не менее чем на 1000 В. При измерении сопротивления изоляции обмоток с номинальным напряжением свыше 6000 В, имеющих значительную емкость по отношению к корпусу, рекомендуется применять мегаомметр на 2500 В с моторным приводом или со статической схемой выпрямления переменного напряжения.

    Измерение сопротивления изоляции относительно корпуса машины и между обмотками следует производить поочередно для каждой цепи, имеющей отдельные выводы, при электрическом соединении всех прочих цепей с корпусом машины.

    Измерение сопротивления изоляции обмоток трехфазного тока, наглухо сопряженных в звезду или треугольник, производится для всей обмотки по отношению к корпусу.

    Изолированные обмотки и защитные конденсаторы, а также иные устройства, постоянно соединенные с корпусом машины, на время измерения сопротивления их изоляции должны быть отсоединены от корпуса машины.

    Измерение сопротивления изоляции обмоток, имеющих непосредственное водяное охлаждение, должно производиться мегаомметром, имеющим внутреннее экранирование; при этом зажим мегаомметра, соединенный с экраном, следует присоединять к водосборным коллекторам, которые при этом не должны иметь металлической связи с внешней системой питания обмоток дистиллятом.

    По окончании измерения сопротивления изоляции каждой цепи следует разрядить ее электрическим соединением с заземленным корпусом машины. Для обмоток на номинальное напряжение 3000 В и выше продолжительность соединения с корпусом должна быть:

    для машин мощностью до 1000 кВт (кВ·А) - не менее 15 с;

    для машин мощностью более 1000 кВт (кВ·А) - не менее 1 мин.

    При пользовании мегаомметром на 2500 В продолжительность соединения с корпусом должна быть не менее 3 мин независимо от мощности машины.

    Измерение сопротивления изоляции заложенных термопреобразователей сопротивления следует проводить мегаомметром напряжением 500 В.

    Измерение сопротивления изоляции изолированных подшипников и масляных уплотнений вала относительно корпуса следует проводить при температуре окружающей среды мегаомметром напряжением не менее 1000 В.

    Таблица 2.

    Таблица 3.

    Таблица 4.

    Сопротивление изоляции R из является основным показателем состояния изоляции статора и ротора электродвигателя.

    Одновременно с измерением сопротивления изоляции обмотки статора определяют коэффи­циент абсорбции. Измерение сопротивления изоляции ротора проводится у синхронных электро­двигателей и электродвигателей с фазным ротором на напряжение 3кВ и выше или мощностью бо­лее 1МВт. Сопротивление изоляции ротора должно быть не ниже 0,2МОм .

    Коэффициент абсорбции в эксплуатации обязательно определять только для электродвигате­лей напряжением выше 3кВ или мощностью боле 1МВт.

    Подготовить средства измерений:

    Проверить уровень заряда батареи или аккумулятора для мегаомметра типа MIC-2500.

    Установить значение испытательного напряжения.

    В случае использования стрелочного прибора типа ЭСО202 установить его горизонтально.

    Для ЭС0202 установить требуемый предел измерений, шкалу прибора и значение испытательного напряжения мегомметра.

    Проверить работоспособность мегомметра. Для этого необходимо замкнуть между собой измерительные щупы и начать вращать рукоятку генератора со скоростью 120¸140 оборотов в минуту. Стрелка прибора должна показывать «0». Разомкнуть измерительные щупы и начать вращать рукоятку генератора со скоростью 120¸140 оборотов в минуту. Стрелка прибора должна показывать «10 4 МОм».

    Перед проведением измерения необходимо открыть вводное устройство электродвигателя (борно), протереть изоляторы от пыли и загрязнения и подключить мегаомметр согласно схемы, приве­дённой на рисунке.

    Рисунок. Измерение сопротивления изоляции обмоток электродвигателя.

    На рисунке А показана схема подключения мегаомметра к испытуемому электродвигателю, у ко­торого обмотки соединены в звезду или треугольник внутри корпуса и произвести рассоединение в борно невозможно. В этом случае мегаомметр подключает­ся к любому зажиму статора электродвигателя и со­противление изоляции измеряется у всей обмотки сразу относительно корпуса.

    На рисунке Б измерение сопротивление изо­ляции производится у электродвигателя по каждой из частей обмотки отдельно, при этом другие части обмотки (которые в данный момент не обрабаты­ваются) закорачиваются и соединяются на землю.

    При измерении сопротивления изоляции отсчёт показаний мегаомметра производят каждые
    15 секунд и результатом считается сопротивление, отсчитанное через 60 секунд после начала измерения, а отношение показаний R 60 /R 15 считается коэффициентом абсорбции.

    Для электродвигателей с номинальным на­пряжением 0,4кВ (электродвигатели до 1000В) одноминутное измерение изоляции мегаомметром на 2500В приравнивается к высоковольтному испытанию.

    У синхронных электродвигателей при изме­рении сопротивления изоляции обмоток статора (обмотки статора) необходимо закоротить и за­землить обмотку ротора. Это необходимо сделать для исключения возможности повреждения изо­ляции ротора.

    Сегодня статья – ответ на вопрос читателей.

    Будут вопросы будут и новые статьи.

    В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название . Такой прибор имеется практически у каждого уважающего себя хозяина дома.

    Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.

    Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.

    Виды обмоток

    Если не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.

    Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:
    • Материал провода обмотки должен быть однородным по всей длине.
    • Форма и площадь поперечного сечения провода должны иметь определенную точность.
    • На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
    • Провод обмотки должен обеспечивать прочный контакт при соединении.

    Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.

    Проверка обмоток электродвигателя 3-фазного мотора . Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим .

    Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).

    На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.

    Возможные неисправности

    Визуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:

    • Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
    • Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
    • Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
    • Пробиванием изоляции между корпусом статора и обмоткой.

    Способы
    Проверка обмоток электродвигателя на обрыв

    Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.

    Проверка обмоток электродвигателя на короткое замыкание

    При коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.

    Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.

    Проверка обмоток электродвигателя на межвитковое замыкание

    Это самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.

    Проверка обмоток электродвигателя способом омметра

    Этот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.

    Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.

    Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.

    Измерение тока в каждой фазе

    Соотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.

    Проверка обмоток электродвигателя переменным током

    Не всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.

    Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.

    Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.

    Проверка обмоток электродвигателя шариком

    Этот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.

    Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.

    Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.

    Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.

    Определение полярности обмоток электрическим методом

    У обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки.

    Чтобы определить маркировку, применяют некоторые способы:
    • и амперметром.
    • и вольтметром.

    Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.

    Определение маркировки выводов обмотки амперметром и батарейкой

    На наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.

    Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.

    Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.

    Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.

    Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.

    Определение полярности вольтметром и понижающим трансформатором

    Первый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.

    Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.

    Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.



    Поделиться