Как самостоятельный организм существует клетка. Клетка и ее основные свойства

Клетка (далее по тексту - «К.») - это элементарная живая система, способная к самостоятельному существованию, самовоспроизведению и развитию; основа строения и жизнедеятельности всех животных и растений. К. существуют и как самостоятельные организмы (простейшие), и в составе многоклеточных организмов (тканевые К.). Термин «Клетка» был предложен английским микроскопистом Робертом Гуком (англ. Robert Hooke; Роберт Хук, 18 июля 1635, остров Уайт, Англия - 3 марта 1703, Лондон).

Рис. 1. Строение клетки:

К. - предмет изучения особого раздела биологии - цитологии. Систематическое изучение К. началось лишь в 19 веке. Одним из крупнейших научных обобщений того времени была клеточная теория, утверждавшая единство строения всей живой природы. Изучение жизни на клеточном уровне лежит в основе современных биологических исследований.

В строении и функциях каждой клетки обнаруживаются признаки, общие для всех К., что отражает единство их происхождения из первичных органических комплексов. Частные особенности различных К. - результат их специализации в процессе эволюции. Так, все К. сходно регулируют , удваивают и используют свой наследственный материал, получают и утилизируют энергию. В то же время разные одноклеточные организмы (амёбы, инфузории и т.д.) сильно различаются размерами, формой, поведением. Не менее резко различаются К. многоклеточных организмов. Так, у человека имеются лимфоидные К. - небольшие (диаметром около 10 мкм) округлые К., участвующие в реакциях, и К., часть которых имеет отростки длиной более метра; эти К. осуществляют основные регуляторные функции в организме.

Рис. 2. Обмен веществ в клетке

(нажмите на картинку для увеличения)

Методы исследования клеток

Первым цитологическим методом была микроскопия живых клеток. Современные варианты прижизненной (витальной) световой микроскопии - фазово-контрастная, люминесцентная, интерференционная и др. - позволяют изучать форму К. и общее строение некоторых её структур, движение К. и их деление. Детали строения клеток обнаруживаются лишь после специального контрастирования, что достигается окраской убитой К. Новый этап изучения структуры К. - электронная микроскопия, дающая значительно большее разрешение структур К. по сравнению со световой микроскопией (разрешающая способность оптических приборов).

Химический состав клеток изучается цито- и гистохимическими методами, позволяющими выяснить локализацию и концентрацию веществ в клеточных структурах, интенсивность синтеза веществ и их перемещение в К. Цитофизиологические методы позволяют изучать функции К., например возбуждение, секрецию.

Общие свойства клеток

В каждой К. различают две основные части - Ядро и цитоплазму (См. Цитоплазма), в которых, в свою очередь, можно выделить структуры, различающиеся по форме, размерам, внутреннему строению, химическим свойствам и функциям. Одни из них - так называемые органоиды - жизненно необходимы К. и обнаруживаются во всех К. Другие - продукты активности К., представляющие временные образования. В специализированных структурах осуществляется разделение различных биохимических функций, что способствует осуществлению в одной и той же К. разнородных процессов, включающих синтез и распад многих веществ.

В ядерных органоидах - хромосомах (См. Хромосомы), в их основном компоненте - , хранится генетическая информация о строении , свойственных организму определённого вида. Другое важнейшее свойство ДНК - способность к самовоспроизведению, что обеспечивает как стабильность наследственной информации, так и её непрерывность - передачу следующим поколениям. На ограниченных участках ДНК, охватывающих несколько генов, как на матрицах, синтезируются рибонуклеиновые кислоты - непосредственные участники синтеза белка. Перенос (транскрипция) кода ДНК происходит при синтезе информационных РНК (и-РНК).

Синтез белка представляется как считывание информации с матрицы РНК. В этом процессе, называемом трансляцией, принимают участие транспортные РНК (т-РНК) и специальные органоиды - рибосомы, образующиеся в ядрышке. Размеры ядрышка определяются главным образом потребностью клеток в рибосомах; поэтому особенно велико оно в К., интенсивно синтезирующих белок. Синтез белка - конечный итог реализации функций хромосом - осуществляется главным образом в цитоплазме.

Белки - ферменты, детали структур и регуляторы разных процессов, включая и транскрипцию - определяют в конечном счёте все стороны жизни К., позволяя клеткам сохранять свою индивидуальность, несмотря на постоянно меняющееся окружение. Если в бактериальной К. синтезируется около 1000 разных белков, то почти в каждой из К. человека - свыше 10000. Таким образом, разнообразие внутриклеточных процессов в ходе эволюции организмов существенно возрастает. Оболочка ядра, отделяющая его содержимое от цитоплазмы, состоит из двух мембран, пронизанных порами - специализированных участков для транспорта некоторых соединений из ядра в цитоплазму и обратно. Другие вещества проходят через мембраны путём диффузии или активного транспорта, требующего затрат энергии.

Многие процессы происходят в цитоплазме К. при участии мембран эндоплазматической сети - основной синтезирующей системы К., а также Гольджи комплекса и . Отличия мембран разных органоидов определяются свойствами образующих их белков и липидов. К некоторым мембранам эндоплазматической сети прикреплены рибосомы; здесь происходит интенсивный синтез белка. Такая гранулярная эндоплазматическая сеть особенно развита в К., секретирующих или интенсивно обновляющих белок, например у человека в К. печени, нервных К. В состав других биологических мембран, лишённых рибосом (гладкоконтурная сеть), входят ферменты, участвующие в синтезе углеводно-белковых и липидных комплексов.

В каналах эндоплазматической сети могут временно накапливаться продукты деятельности клетки. В некоторых К. по каналам происходит направленный транспорт веществ. Перед выведением из К. вещества концентрируются в пластинчатом комплексе (комплексе гольджи). Здесь обособляются различные включения К., например секреторные или пигментные гранулы, образуются лизосомы - пузырьки, содержащие гидролитические ферменты и участвующие во внутриклеточном переваривании многих веществ. Система окруженных мембранами каналов, вакуолей и пузырьков представляет одно целое. Так, эндоплазматическая сеть может без перерыва переходить в мембраны, окружающие ядро, соединяться с цитоплазматической мембраной, формировать комплекс Гольджи. Однако связи эти нестабильны. Нередко, а во многих клетках обычно разные мембранные структуры разобщены и обмениваются веществами через гиалоплазму.

Энергетика клетки во многом зависит от работы митохондрий. Число их колеблется в К. разного типа от десятков до тысяч. Например, в печёночной К. человека около 2 тысяч митохондрий; их общий объём не менее 1 / 5 объёма К. Внешняя мембрана митохондрии отграничивает её от цитоплазмы, на внутренней - происходят основные энергетические превращения веществ, в результате которых образуется соединение, богатое энергией, - аденозинтрифосфорная кислота (АТФ) - универсальный переносчик энергии в К.

Митохондрии содержат ДНК и способны к самовоспроизведению; однако автономность митохондрий относительна, их репродукция и деятельность зависят от ядра. За счет энергии АТФ в К. осуществляются различные синтезы, транспорт и выделение веществ, механическая работа, регуляция процессов и т.д. В делении клеток и иногда в их движении участвуют структуры, имеющие вид трубочек субмикроскопических размеров. «Сборка» таких структур и их функционирование зависят от центриолей, при участии которых организуется веретено деления клетки, с чем связано перемещение хромосом и ориентация оси деления К. Базальные тельца - производные центриолей - необходимы для построения и нормальной работы жгутиков и ресничек - локомоторных и чувствительных образований К., строение которых у простейших и в различных К. многоклеточных однотипно.

От внеклеточной среды клетка отделена плазматической мембраной, через которую происходит поступление ионов и молекул в К. и выделение их из К. Отношение поверхности К. к ее объему уменьшается с увеличением объема, и чем крупнее К., тем более затруднены ее связи с внешней средой. Величина К. не может быть особенно большой. Для живых К. характерен активный транспорт ионов, требующий затраты энергии, специальных ферментов и, возможно, переносчиков. Благодаря активному и избирательному переносу в клетках одних ионов и непрерывному удалению из нее других создается разность концентраций ионов в К. и окружающей среде. Этот эффект может быть обусловлен и связыванием ионов компонентами К. Многие ионы необходимы как активаторы внутриклеточных синтезов и как стабилизаторы структуры органоидов.

Обратимые изменения соотношения ионов в клетке и среде лежат в основе биоэлектрической активности К. - одного из важных факторов передачи сигналов от одной К. к другой (биоэлектрические потенциалы). Образуя впячивания, которые затем замыкаются и отделяются в виде пузырьков внутрь К., плазматическая мембрана способна захватывать растворы крупных молекул (пиноцитоз) или даже отдельные частицы величиной в несколько мкм (фагоцитоз). Так осуществляется питание некоторых К., перенос веществ через К., захват бактерий фагоцитами. Со свойствами плазматической мембраны связаны и силы сцепления, удерживающие во многих случаях К. друг около друга, например в покровах тела или внутренних органах.

Сцепление и связь клеток обеспечиваются химическим взаимодействием мембран и специальными структурами мембраны - десмосомами.

Рассмотренная в общей форме схема строения клетки свойственна в основных чертах как животным, так и растительным клеткам. Но есть и существенные отличия в особенностях метаболизма и строения растительных К. от животных.

Рис. 3. Разнообразие животных и растительных клеток:

(нажмите на картинку для увеличения)

1 - клетка печени аксолотля, в цитоплазме - красные митохондрии и фиолетовые белковые включения, в ядре - красное ядрышко и синие глыбки хроматина; 2 - хроматофор аксолотля, заполненный гранулами пигмента; 3 - эритроциты лягушки; 4 - клетка Пуркине мозжечка крысы; 5 - клетка водоросли спирогиры.

Клетки растений

Поверх плазматической мембраны растительные клетки покрыты, как правило, твёрдой внешней оболочкой (она может отсутствовать лишь у половых К.), состоящей у большинства растений главным образом из полисахаридов: целлюлозы, пектиновых веществ и гемицеллюлоз, а у грибов и некоторых водорослей - из хитина. Оболочки снабжены порами, через которые с помощью выростов цитоплазмы соседние К. связаны друг с другом. Состав и строение оболочки меняются по мере роста и развития К. Часто у клеток, прекративших рост, оболочка пропитывается лигнином, кремнезёмом или другим веществом, которое делает её более прочной.

Оболочки К. определяют механические свойства растения. К. некоторых растительных тканей отличаются особенно толстыми и прочными стенками, сохраняющими свои скелетные функции после гибели К. Дифференцированные растительные К. имеют несколько вакуолей или одну центральную вакуоль, занимающую обычно большую часть объёма К. Содержимое вакуолей - раствор различных солей, углеводов, органических кислот, алкалоидов, аминокислот, белков, а также запас воды. В вакуолях могут откладываться питательные вещества.

В цитоплазме растительной клетки имеются специальные органоиды - пластиды; лейкопласты (в них часто откладывается крахмал), хлоропласты (содержат преимущественно хлорофилл и осуществляют фотосинтез) и хромопласты (содержат пигменты из группы каротиноидов). Пластиды, как и митохондрии, способны к самовоспроизведению. Комплекс Гольджи в растительной К. представлен рассеянными по цитоплазме диктиосомами.

Рис. 4. Внутреннее строение растительной клетки

(нажмите на картинку для увеличения)

Рис. 5. Схема строения клетки образовательной ткани (меристемы) растения:

(нажмите на картинку для увеличения)

1 - клеточная стенка; 2 - плазмодесмы; 3 - плазматическая мембрана; 4 - эндоплазматическая сеть; 5 - вакуоли; 6 - рибосомы; 7 - митохондрии; 8 - пластида; 9 - комплекс Гольджи; 10 - оболочка ядра; 11 - поры в ядерной оболочке; 12 - хроматин; 13 - ядрышко.

Одноклеточные организмы

Изучение простейших представляет большой интерес для выяснения филогенетических возможностей клеток: эволюционные изменения организма протекают у них на клеточном уровне. В отличие от простейших и К. многоклеточных организмов, бактерии, синезеленые водоросли, актиномицеты не имеют оформленного ядра и хромосом. Их генетический аппарат, называется нуклеоидом, представлен нитями ДНК и не окружен оболочкой.

Еще более отличаются от клеток многоклеточных организмов и от простейших , у которых отсутствуют основные, необходимые для обмена веществ ферменты. Поэтому вирусы могут расти и размножаться, лишь проникая в К. и используя их ферментные системы.

Рис. 6. Разнообразие животных и растительных клеток:

(нажмите на картинку для увеличения)

1 - клетки почки лягушки, видны митохондрии; 2 - чувствительная клетка спинномозгового ганглия человека, виден комплекс Гольджи; 3 - мегакариоцит из костного мозга человека; 4 - клетка из подкожной клетчатки крысы; 5 - клетки человека, видны комплекс Гольджи и секреторные гранулы; 6 - нейтрофильный лейкоцит человека; 7 - гладкая мышечная клетка кишечника человека; 8 - тучные клетки в рыхлой соединительной ткани крысы; 9 - эритроциты человека; 10 - эритроциты верблюда; 11 - малая и большая пирамидальные клетки коры головного мозга человека; 12 - эритроциты курицы; 13 - клетка волоска тычиночной нити традесканции; 14 - клетки листа элодеи; 15 - клетка плода ландыша; 16 - эритроциты свиньи.

Специальные функции клеток

В процессе эволюции многоклеточных возникло разделение функций между клетками, что привело к расширению возможностей приспособления животных и растений к меняющимся условиям среды. Закрепившиеся наследственно различия в форме К., их размерах и некоторых сторонах метаболизма реализуются в процессе индивидуального развития организма. Основное проявление развития - дифференцировка К., их структурная и функциональная специализация.

Дифференцированные клетки имеют такой же набор хромосом, как и оплодотворенная яйцеклетка. Это доказывается пересадкой ядра дифференцированной К. в предварительно лишенную ядра яйцеклетку, после чего может развиваться полноценный организм. Таким образом, различия между дифференцированными К., по-видимому, обусловливаются разными соотношениями активных и неактивных генов, каждый из которых кодирует биосинтез определённого белка.

Судя по составу белков, в дифференцированных К. активна (способна к транскрипции) лишь небольшая часть (порядка 10%) генов, свойственных К. данного вида организмов. Среди них лишь немногие ответственны за специальную функцию К., а остальные обеспечивают общеклеточные функции. Так, в мышечных клетках активны гены, кодирующие структуру сократимых белков, в эритроидных К. - гены, кодирующие биосинтез , и т.д. Однако в каждой К. должны быть активны гены, определяющие биосинтез веществ и структур, необходимых для всех К., например ферментов, участвующих в энергетических превращениях веществ.

В процессе специализации К. отдельные общеклеточные функции их могут развиваться особенно сильно. Так, в железистых К. более всего выражена синтетическая активность, мышечные - наиболее сократимы, - наиболее возбудимы. В узкоспециализированных клетках обнаруживаются структуры, характерные лишь для этих К. (например, у животных - миофибриллы мышц, тонофибриллы и реснички некоторых покровных К., нейрофибриллы нервных К., жгутики у простейших или у сперматозоидов многоклеточных организмов). Иногда специализация сопровождается утратой некоторых свойств (например, нервные К. утрачивают способность к размножению; ядра К. кишечного эпителия млекопитающих не могут в зрелом состоянии синтезировать РНК; зрелые млекопитающих лишены ядра).

Выполнение важных для организма функций включает иногда гибель клеток. Так, К. эпидермиса постепенно ороговевают и гибнут, но остаются некоторое время в пласте, предохраняя подлежащие ткани от повреждения и . В сальных железах К. постепенно превращаются в капли , который используется организмом или выделяется.

Для выполнения некоторых тканевых функций К. образуют неклеточные структуры. Основные пути их образования - секреция или превращения компонентов цитоплазмы. Так, значительная по объёму часть подкожной клетчатки, хряща и кости составляет межуточное вещество - производное К. соединительной ткани. Клетки обитают в жидкой среде (плазме крови ), содержащей белки, сахара и другие вещества, вырабатываемые разными клетками организма.

Клетки эпителия, образующие пласт, окружены тонкой прослойкой диффузно распределённых веществ, главным образом гликопротеидов (так называемый цемент, или надмембранный компонент). Внешние покровы членистоногих и раковины моллюсков - также продукты выделения К.

Взаимодействие специализированных клеток - необходимое условие жизни организма и нередко самих этих К. (гистология). Лишённые связей друг с другом, например в культуре, К. быстро утрачивают особенности присущих им специальных функций.

Рис. 7. Общий вид эпителиальной клетки животного при различном увеличении:

(нажмите на картинку для увеличения)

а - в оптический микроскоп; б - при малом увеличении электронного микроскопа; в - при большом увеличении.

Структуры ядра: 1 - ядрышко; 2 - хроматин (участки хромосом); 3 - ядерная оболочка.

Структуры цитоплазмы: 4 - рибосомы; 5 - гранулярная (покрытая рибосомами) эндоплазматическая сеть; 6 - гладкоконтурная сеть; 7 - комплекс Гольджи; 8 - митохондрии; 9 - мультивезикулярные (многопузырьковые) тела; 10 - секреторные гранулы; 11 - жировые включения; 12 - плазматическая мембрана; 13 - десмосома.

Деление клеток

В основе способности клеток к самовоспроизведению лежат уникальное свойство ДНК самокопироваться и строго равноценное деление репродуцированных хромосом в . В результате деления образуются две клетки, идентичные исходной по генетическим свойствам и с обновленным составом ядра и цитоплазмы. Процессы самовоспроизведения хромосом, их деления, образования двух ядер и деления цитоплазмы разделены во времени, составляя в совокупности митотический цикл К. В случае, если после деления К. начинает готовиться к следующему делению, митотический цикл совпадает с жизненным циклом К. Однако во многих случаях после деления (а иногда перед ним) К. выходят из митотического цикла, дифференцируются и выполняют в организме ту или иную специальную функцию. Состав таких К. может обновляться за счёт делений малодифференцированных К. В некоторых тканях и дифференцированные К. способны повторно входить в митотический цикл.

В нервной ткани дифференцированные клетки не делятся; многие из них живут так же долго, как организм в целом, то есть у человека - несколько десятков лет. При этом ядра нервных К. не утрачивают способности к делению: будучи пересажены в цитоплазму клеток, ядра нейронов синтезируют ДНК и делятся. Опыты с клетками-гибридами показывают влияние цитоплазмы на проявление ядерных функций. Неполноценная подготовка к делению предотвращает митоз или искажает его течение. Так, в некоторых случаях не происходит деления цитоплазмы и образуется двуядерная К. Многократное деление ядер в неделящейся К. приводит к появлению многоядерных К. или сложных надклеточных структур (симпластов), например в поперечнополосатых мышцах.

Иногда репродукция клеток ограничивается воспроизведением хромосом, и образуется полиплоидная К., имеющая удвоенный (сравнительно с исходной К.) набор хромосом. Полиплоидизация приводит к усилению синтетической активности, увеличению размеров и массы К.

Рис. 8. Разнообразие клеток высших растений:

(нажмите на картинку для увеличения)

а, б - меристематические клетки; в - крахмалоносная клетка из запасающей паренхимы; г - клетка ; д - двуядерная клетка секреторного слоя пыльцевого гнезда; е - клетка ассимиляционной ткани листа с хлоропластами; ж - членик ситовидной трубки с клеткой-спутницей; з - каменистая клетка; и - членик .

Обновление клеток

Для длительной работы каждой клетке необходимо восстановление изнашиваемых структур, как и ликвидация повреждений К., вызванных внешними воздействиями. Восстановительные процессы, характерные для всех К., связаны с изменениями проницаемости плазматической мембраны и сопровождаются усилением внутриклеточных синтезов, в первую очередь синтеза белка. Во многих тканях стимуляция восстановительных процессов приводит к репродукции генетического аппарата и делению К.; это свойственно, например покровам или кроветворной системе. Процессы внутриклеточного обновления в этих тканях выражены слабо, их К. живут сравнительно недолго (например, К. кишечного покрова млекопитающих - всего несколько суток). Максимальной выраженности внутриклеточные восстановительные процессы достигают в неделящихся или слабоделящихся клеточных популяциях, например в нервных клетках. Показателем совершенства процессов внутреннего обновления К. является длительность их жизни; для многих нервных К. она совпадает с продолжительностью жизни всего организма.

Рис. 9. Клетки щитовидной железы крысы с включениями (увеличено в 18000 раз):

(нажмите на картинку для увеличения)

Условные обозначения: 1 - ядро, 2 - ядерная оболочка, 3 - клеточная оболочка, 4 - эндоплазматическая сеть, 5 - митохондрии, 6 - комплекс Гольджи, 7 - плотные тела, 8 - рибосомы.

Мутации клеток

Обычно процесс воспроизведения ДНК происходит без отклонений, и генетический код остаётся постоянным, что обеспечивает синтез одного и того же набора белков в огромном числе клеточных поколений. Однако в редких случаях может произойти мутация - частичное изменение структуры гена. Конечный её эффект - изменение свойств белков, кодируемых мутантными генами. Если при этом затрагиваются важные ферментные системы, свойства клетки, а иногда и всего организма существенно изменяются. Так, мутация одного из генов, контролирующих синтез гемоглобина, приводит к тяжелому заболеванию - . Естественный отбор полезных мутаций - важный механизм эволюции.

Рис. 10. Специализированная форма мембран (пористые пластинки) в цитоплазме созревающей яйцеклетки севрюги (увеличено в 35000 раз):

(нажмите на картинку для увеличения)

Условные обозначения: 5 - митохондрии, 9 - пористые пластинки.

Регуляция функций клеток

Основной механизм регуляции внутриклеточных процессов связан с различными влияниями на ферменты - высоко специфичные катализаторы биохимических реакций. Регуляция может осуществляться на генетическом уровне, когда определяется состав ферментов или количество того или иного фермента в К. В последнем случае регуляция может происходить и на уровне трансляции. Другой тип регуляции - воздействие на сам фермент, в результате чего может происходить как торможение, так и стимуляция его активности. Структурный уровень регуляции - влияние на сборку клеточных структур: мембран, рибосом и т.д. Конкретными регуляторами внутриклеточных процессов могут быть нервные влияния, гормоны, специальные вещества, вырабатываемые внутри К. либо окружающими клетками (особенно белки), или же сами продукты реакций. В последнем случае воздействие осуществляется по принципу обратной связи, когда продукт реакции влияет на активность фермента - катализатора этой реакции. Регуляция может осуществляться через транспорт предшественников и ионов, влияния на матричный синтез (РНК, полисомы, ферменты синтеза), изменение формы регулируемого фермента.

Организация и регуляция функций клетки на молекулярном уровне определяют такие свойства живых систем, как пространственная компактность и энергетическая экономичность. Важное свойство многоклеточных организмов - надёжность - во многом зависит от множественности (взаимозаменяемости) К. каждого функционального типа, а также от возможности их замены в результате размножения К. и обновления компонентов каждой К.

В используются воздействия на клетки для лечения и . Многие лекарственные вещества изменяют активность определенных К. Так, транквилизаторы и болеутоляющие вещества снижают интенсивность деятельности нервных К., а стимуляторы её усиливают. Некоторые вещества стимулируют сокращение мышечных К. сосудов, другие - матки

Условные обозначения: 5 - митохондрии, 10 - миофибриллы.

Рис. 12. Участки двух клеток щитовидной железы крысы (увеличено в 30000 раз):

(нажмите на картинку для увеличения)

Условные обозначения: 3 - клеточная оболочка, 4 - эндоплазматическая сеть, 5 - митохондрии, 6 - комплекс Гольджи.

Подробнее о клетках читайте в литературе:

  • Николай Константинович Кольцов., Организация клетки, М. - Л., 1936;
  • Эдмунд Вильсон., Клетка и её роль в развитии и наследственности, перевод с английского, т. 1 - 2, М. - Л., 1936 - 1940;
  • Дмитрий Николаевич Насонов и Владимир Яковлевич Александров., Реакция живого вещества на внешние воздействия, М. - Л., 1940;
  • Борис Васильевич Кедровский., Цитология белковых синтезов в животной клетке, Москва , 1959;
  • Мэзия Д., Митоз и физиология клеточного деления, пер. с англ., М., 1963;
  • Руководство по цитологии, т. 1 - 2, М. - Л., 1965 - 66;
  • Всеволод Яковлевич Бродский., Трофика клетки, М., 1966;
  • Живая клетка, [Сборник статей], перевод с английского, М., 1966;
  • Де Робертис Э., Новинский В., Саэс Ф., Биология клетки, пер. с англ., М., 1967;
  • Юрий Маркович Васильев и Андрей Георгиевич Маленков., Клеточная поверхность и реакции клеток, Л., 1968;
  • Иосиф Александрович Алов, Брауде А. И., Аспиз М. Е., Основы функциональной морфологии клетки, 2 издание, М., 1969;
  • Лёви А., Сикевиц Ф., Структура и функции клетки, пер. с англ., М., 1971;
  • Handbook of molecular cytology, ed. A. Lima-de-Faria, Amst., 1969.

Тест по биологии Многообразие живого и наука систематика для учащихся 7 класса. Тест включает в себя 2 варианта, каждый вариант состоит из 2 частей (часть А и часть Б). В части А - 11 вопросов в части Б - 6 вопросов.

Задания А — базового уровня сложности
Задания Б — повышенного уровня сложности

1 вариант

А1. Все живые организмы состоят из

1) клеток
2) тканей
3) межклеточного вещества
4) систем органов

А2. Как самостоятельный организм существует клетка

1) кожицы листа
2) бактериальная
3) мышечного волокна
4) корневого чехлика

А3. Живой организм представляет собой

1) объединение живых клеток
2) совокупность покровных и проводящих тканей
3) одну систему органов
4) согласованную систему клеток, тканей, органов

А4. Сходные по строению и физиологическим особенностям особи образуют

1) организм
2) биосферу
3) вид
4) лесное сообщество

А5. Сообщество животных и растений -организмов, живу­щих совместно на лугу и взаимодействующих между со­бой, называют

1) популяция
2) биоценоз
3) биосфера
4) вид

А6. Почва, входящая в биосферу, представляет собой

1) живое вещество
2) косное вещество
3) биокосное вещество
4) неорганическое вещество

А7. Процесс создания человеком сортов культурных растений называется

1) искусственный отбор
2) естественный отбор
3) борьба за существование
4) наследственность

А8. В результате естественного отбора в природе выживают

1) только простейшие животные
2) особи, приспособленные к условиям среды
3) все цветковые растения
4) полезные для человека особи

А9. Классификацией, или распределением организмов по группам на основе их сходства и родства, занимается био­логическая наука

1) система тика
2) анатомия
3) экология
4) цитология

А10. Наименьшей систематической единицей классификации живых организмов принято считать

1) род
2) вид
3) отряд
4) царство

А11. Неклеточное строение имеют организмы

1) грибы
2) бактерии
3) вирусы
4) животные

Б1.

А. Существуют виды, у которых организм состоит из од­ной клетки.
Б. Бактерия — одна из самых сложноустроенных клеток.

1) Верно только А
2) Верно только Б
3) Верны оба суждения
4) Неверны оба суждения

Б2. Верны ли следующие утверждения?

А. Естественный отбор особей в природе ведет к образова­нию новых видов.
Б. Борьба за существование происходит только между животными.

1) Верно только А
2) Верно только Б
3) Верны оба суждения
4) Неверны оба суждения

Б3. Верны ли следующие утверждения?

А. Близкородственные виды животных объединяют в род.
Б. Всего различают два царства живой природы: растения и животные.

1) Верно только А
2) Верно только Б
3) Верны оба суждения
4) Неверны оба суждения

Б4. Выберите три верных утверждения. Уровни организации живой материи, которые участвуют в образовании орга­низма многоклеточного животного, — это

1) клеточный
2) видовой
3) тканевый
4) органный
5) биоценотический
6) биосферный

Б5. У становите последовательность уровней организации живой материи, начиная с клетки.

1) клетка
2) организм
3) ткань
4) биосфера
5) вид
6) биоценоз

Б6. У становите последовательность систематических категорий, начиная с наименьшей.

1) род
2) царство
3) класс
4) вид

2 вариант

А1. Клетка представляет собой отдельный организм у

1) простейшего животного
2) цветкового растения
3) шляпочного гриба
4) земноводного животного

А2. Клетки, строение и функции которых сходны, образуют

1) организм лягушки
2) стебель дерева
3) проводящую ткань растения
4) внутренние органы рыбы

А3. В природе самостоятельно существовать не может

1) бактериальная клетка
2) простейшее животное
3) плавник рыбы
4) одноклеточная водоросль

А4. Группа особей из представителей одного вида, занимаю­щая определенную территорию, — это

1) вид
2) популяция
3) животные леса
4) растения заливного луга

А5. Оболочка Земли, заселенная живыми организмами, — это

1) популяция
2) биоценоз
3) биосфера
4) атмосфера

А6. Грибы представляют собой вещество биосферы

1) живое
2) косное
3) биокосное
4) органическое

А7. На основе наследственной изменчивости человек создает

1) виды беспозвоночных животных
2) породы домашних животных
3) виды цветковых растений
4) органы позвоночных животных

А8. В природе в процессе борьбы за существование происходит

1) искусственный отбор
2) естественный отбор
3) образование пород домашних животных
4) образование сортов культурных растений

А9. Первую естественную классификацию видов создал

1) К. Линней
2) Ч. Дарвин
3) Аристотель
4) Теофраст

А10. Совокупность сходных по строению особей, занимающих общую территорию, свободно скрещивающихся между со­бой и дающих плодовитое потомство, называют

1) род
2) вид
3) отряд
4) класс

А11. Все растения, населяющие Землю, объединяют в систематическую группу­

1) семейство
2) отряд
3) тип
4) царство

Б1. Верны ли следующие утверждения?

А. Клетка одноклеточного животного способна осуществ­лять все процессы жизнедеятельности.
Б. Целостный организм животного — это совокупность отдельных органов.

1) Верно только А
2) Верно только Б
3) Верны оба суждения
4) Неверны оба суждения

Б2. Верны ли следующие утверждения?

А. Борьба за существование является одной из движущих сил эволюции.
Б. Индивидуальная наследственная изменчивость присуща всем живым организмам.

1) Верно только А
2) Верно только Б
3) Верны оба суждения
4) Неверны оба суждения

Б3. Верны ли следующие утверждения?

А. В основу современной систематики организмов поло­жена общность их строения и происхождения.
Б. В систематике принято различать четыре царства жи­вой природы.

1) Верно только А
2) Верно только В
3) Верны оба суждения
4) Неверны оба суждения

Б4. Выберите три верных утверждения. Биосфера как живая оболочка Земли включает

1) живое вещество
2) биокосное вещество
3) ядро
4) мантию
5) косное вещество
6) магму в недрах вулкана

Б5. Установите последовательность уровней организации живой материи, начиная с биосферы.

1) биосфера
2) организм
3) вид
4) орган
5) клетка
6) биоценоз

Б6. Установите последовательность систематических категорий, начиная с наибольшей.

1) отряд
2) вид
3) царство
4) класс

Ответы на тест по биологии Многообразие живого и наука систематика
1 вариант
А1. 1
А2. 2
А3. 4
А4. 3
А5. 2
А6. 3
А7. 1
А8. 2
А9. 1
А10. 2
А11. 3
Б1. 1
Б2. 1
Б3. 1
Б4. 134
Б5. 132564
Б6. 4132
2 вариант
А1. 1
А2. 3
А3. 3
А4. 2
А5. 3
А6. 1
А7. 2
А8. 2
А9. 2
А10. 2
А11. 4
Б1. 1
Б2. 3
Б3. 3
Б4. 125
Б5. 163245
Б6. 3412

Клетка

элементарная живая система, способная к самостоятельному существованию, самовоспроизведению и развитию; основа строения и жизнедеятельности всех животных и растений. К. существуют и как самостоятельные организмы (см. Простейшие), и в составе многоклеточных организмов (тканевые К.). Термин «К.» предложен английским микроскопистом Р. Гуком (1665). К. - предмет изучения особого раздела биологии - цитологии (См. Цитология). Систематическое изучение К. началось лишь в 19 в. Одним из крупнейших научных обобщений того времени была Клеточная теория , утверждавшая единство строения всей живой природы. Изучение жизни на клеточном уровне лежит в основе современных биологических исследований.

В строении и функциях каждой К. обнаруживаются признаки, общие для всех К., что отражает единство их происхождения из первичных органических комплексов. Частные особенности различных К. - результат их специализации в процессе эволюции. Так, все К. сходно регулируют обмен веществ, удваивают и используют свой наследственный материал, получают и утилизируют энергию. В то же время разные одноклеточные организмы (амёбы, инфузории и т.д.) сильно различаются размерами, формой, поведением. Не менее резко различаются К. многоклеточных организмов. Так, у человека имеются лимфоидные К. - небольшие (диаметром около 10 мкм ) округлые К., участвующие в иммунологических реакциях, и нервные К., часть которых имеет отростки длиной более метра; эти К. осуществляют основные регуляторные функции в организме.

Методы исследования. Первым цитологическим методом была микроскопия живых К. Современные варианты прижизненной (витальной) световой микроскопии - фазово-контрастная, люминесцентная, интерференционная и др. (см. Микроскоп) - позволяют изучать форму К. и общее строение некоторых её структур, движение К. и их деление. Детали строения К. обнаруживаются лишь после специального контрастирования, что достигается окраской убитой К. Новый этап изучения структуры К. - электронная микроскопия, дающая значительно большее разрешение структур К. по сравнению со световой микроскопией (см. Разрешающая способность оптических приборов). Химический состав К. изучается цито- и гистохимическими методами, позволяющими выяснить локализацию и концентрацию веществ в клеточных структурах, интенсивность синтеза веществ и их перемещение в К. (см. Гистохимия). Цитофизиологические методы позволяют изучать функции К., например возбуждение, секрецию. См. также Авторадиография , Микроскопическая техника , Цитофотометрия .

Общие свойства клеток. В каждой К. различают две основные части - Ядро и цитоплазму (См. Цитоплазма), в которых, в свою очередь, можно выделить структуры, различающиеся по форме, размерам, внутреннему строению, химическим свойствам и функциям. Одни из них - так называемые органоиды - жизненно необходимы К. и обнаруживаются во всех К. Другие - продукты активности К., представляющие временные образования. В специализированных структурах осуществляется разделение различных биохимических функций, что способствует осуществлению в одной и той же К. разнородных процессов, включающих синтез и распад многих веществ.

В ядерных органоидах - хромосомах (См. Хромосомы), в их основном компоненте - ДНК, хранится генетическая информация о строении белков, свойственных организму определённого вида (см. Ген , Генетический код). Другое важнейшее свойство ДНК - способность к самовоспроизведению, что обеспечивает как стабильность наследственной информации, так и её непрерывность - передачу следующим поколениям. На ограниченных участках ДНК, охватывающих несколько генов, как на матрицах, синтезируются рибонуклеиновые кислоты - непосредственные участники синтеза белка. Перенос (Транскрипция) кода ДНК происходит при синтезе информационных РНК (и-РНК). Синтез белка представляется как считывание информации с матрицы РНК. В этом процессе, называемом трансляцией (См. Трансляция), принимают участие транспортные РНК (т-РНК) и специальные органоиды - Рибосомы , образующиеся в ядрышке (См. Ядрышко). Размеры ядрышка определяются главным образом потребностью К. в рибосомах; поэтому особенно велико оно в К., интенсивно синтезирующих белок. Синтез белка - конечный итог реализации функций хромосом - осуществляется главным образом в цитоплазме. Белки - ферменты, детали структур и регуляторы разных процессов, включая и транскрипцию - определяют в конечном счёте все стороны жизни К., позволяя К. сохранять свою индивидуальность, несмотря на постоянно меняющееся окружение. Если в бактериальной К. синтезируется около 1000 разных белков, то почти в каждой из К. человека - свыше 10000. Таким образом, разнообразие внутриклеточных процессов в ходе эволюции организмов существенно возрастает. Оболочка ядра, отделяющая его содержимое от цитоплазмы, состоит из двух мембран, пронизанных порами - специализированных участков для транспорта некоторых соединений из ядра в цитоплазму и обратно. Другие вещества проходят через мембраны путём диффузии или активного транспорта, требующего затрат энергии. Многие процессы происходят в цитоплазме К. при участии мембран эндоплазматической сети (См. Эндоплазматическая сеть) - основной синтезирующей системы К., а также Гольджи комплекс а и митохондрий (См. Митохондрии). Отличия мембран разных органоидов определяются свойствами образующих их белков и липидов. К некоторым мембранам эндоплазматической сети прикреплены рибосомы; здесь происходит интенсивный синтез белка. Такая гранулярная эндоплазматическая сеть особенно развита в К., секретирующих или интенсивно обновляющих белок, например у человека в К. печени, поджелудочной железы, нервных К. В состав других биологических мембран (См. Биологические мембраны), лишённых рибосом (гладкоконтурная сеть), входят ферменты, участвующие в синтезе углеводно-белковых и липидных комплексов. В каналах эндоплазматической сети могут временно накапливаться продукты деятельности К.; в некоторых К. по каналам происходит направленный транспорт веществ. Перед выведением из К. вещества концентрируются в пластинчатом комплексе (комплексе Гольджи). Здесь обособляются различные включения К., например секреторные или пигментные гранулы, образуются Лизосомы - пузырьки, содержащие гидролитические ферменты и участвующие во внутриклеточном переваривании многих веществ. Система окруженных мембранами каналов, вакуолей и пузырьков представляет одно целое. Так, эндоплазматическая сеть может без перерыва переходить в мембраны, окружающие ядро, соединяться с цитоплазматической мембраной, формировать комплекс Гольджи. Однако связи эти нестабильны. Нередко, а во многих К. обычно разные мембранные структуры разобщены и обмениваются веществами через гиалоплазму (См. Гиалоплазма). Энергетика К. во многом зависит от работы митохондрий. Число их колеблется в К. разного типа от десятков до тысяч. Например, в печёночной К. человека около 2 тыс. митохондрий; их общий объём не менее 1 / 5 объёма К. Внешняя мембрана митохондрии отграничивает её от цитоплазмы, на внутренней - происходят основные энергетические превращения веществ, в результате которых образуется соединение, богатое энергией, - аденозинтрифосфорная кислота (АТФ) - универсальный переносчик энергии в К. Митохондрии содержат ДНК и способны к самовоспроизведению; однако автономность митохондрий относительна, их репродукция и деятельность зависят от ядра. За счет энергии АТФ в К. осуществляются различные синтезы, транспорт и выделение веществ, механическая работа, регуляция процессов и т.д. В делении К. и иногда в их движении участвуют структуры, имеющие вид трубочек субмикроскопических размеров. «Сборка» таких структур и их функционирование зависят от центриолей (См. Центриоли), при участии которых организуется Веретено деления клетки , с чем связано перемещение хромосом и ориентация оси деления К. Базальные тельца - производные центриолей - необходимы для построения и нормальной работы жгутиков и ресничек - локомоторных и чувствительных образований К., строение которых у простейших и в различных К. многоклеточных однотипно.

От внеклеточной среды К. отделена плазматической мембраной, через которую происходит поступление ионов и молекул в К. и выделение их из К. Отношение поверхности К. к ее объему уменьшается с увеличением объема, и чем крупнее К., тем более затруднены ее связи с внешней средой. Величина К. не может быть особенно большой. Для живых К. характерен Активный транспорт ионов , требующий затраты энергии, специальных ферментов и, возможно, переносчиков. Благодаря активному и избирательному переносу в К. одних ионов и непрерывному удалению из нее других создается разность концентраций ионов в К. и окружающей среде. Этот эффект может быть обусловлен и связыванием ионов компонентами К. Многие ионы необходимы как активаторы внутриклеточных синтезов и как стабилизаторы структуры органоидов. Обратимые изменения соотношения ионов в К. и среде лежат в основе биоэлектрической активности К. - одного из важных факторов передачи сигналов от одной К. к другой (см. Биоэлектрические потенциалы). Образуя впячивания, которые затем замыкаются и отделяются в виде пузырьков внутрь К., плазматическая мембрана способна захватывать растворы крупных молекул (Пиноцитоз) или даже отдельные частицы величиной в несколько мкм (Фагоцитоз). Так осуществляется питание некоторых К., перенос веществ через К., захват бактерий фагоцитами. Со свойствами плазматической мембраны связаны и силы сцепления, удерживающие во многих случаях К. друг около друга, например в покровах тела или внутренних органах. Сцепление и связь К. обеспечиваются химическим взаимодействием мембран и специальными структурами мембраны - десмосомами (См. Десмосомы).

Рассмотренная в общей форме схема строения К. свойственна в основных чертах как животным, так и растительным К.. Но есть и существенные отличия в особенностях метаболизма и строения растительных К. от животных.

Клетки растений . Поверх плазматической мембраны растительные К. покрыты, как правило, твёрдой внешней оболочкой (она может отсутствовать лишь у половых К.), состоящей у большинства растений главным образом из полисахаридов: целлюлозы, пектиновых веществ и гемицеллюлоз, а у грибов и некоторых водорослей - из хитина. Оболочки снабжены порами, через которые с помощью выростов цитоплазмы соседние К. связаны друг с другом. Состав и строение оболочки меняются по мере роста и развития К. Часто у К., прекративших рост, оболочка пропитывается лигнином, кремнезёмом или др. веществом, которое делает её более прочной. Оболочки К. определяют механические свойства растения. К. некоторых растительных тканей отличаются особенно толстыми и прочными стенками (см. Древесина), сохраняющими свои скелетные функции после гибели К. Дифференцированные растительные К. имеют несколько вакуолей (См. Вакуоли) или одну центральную вакуоль, занимающую обычно большую часть объёма К. Содержимое вакуолей - раствор различных солей, углеводов, органических кислот, алкалоидов, аминокислот, белков, а также запас воды. В вакуолях могут откладываться питательные вещества. В цитоплазме растительной К. имеются специальные органоиды - Пластиды ; лейкопласты (в них часто откладывается крахмал), хлоропласты (содержат преимущественно хлорофилл и осуществляют Фотосинтез) и хромопласты (содержат пигменты из группы каротиноидов). Пластиды, как и митохондрии, способны к самовоспроизведению. Комплекс Гольджи в растительной К. представлен рассеянными по цитоплазме диктиосомами (См. Диктиосомы).

Специальные функции клеток. В процессе эволюции многоклеточных возникло разделение функций между К., что привело к расширению возможностей приспособления животных и растений к меняющимся условиям среды. Закрепившиеся наследственно различия в форме К., их размерах и некоторых сторонах метаболизма реализуются в процессе индивидуального развития организма. Основное проявление развития - Дифференцировка К., их структурная и функциональная специализация. Дифференцированные К. имеют такой же набор хромосом, как и оплодотворенная яйцеклетка. Это доказывается пересадкой ядра дифференцированной К. в предварительно лишенную ядра яйцеклетку, после чего может развиваться полноценный организм. Таким образом, различия между дифференцированными К., по-видимому, обусловливаются разными соотношениями активных и неактивных генов, каждый из которых кодирует биосинтез определённого белка. Судя по составу белков, в дифференцированных К. активна (способна к транскрипции) лишь небольшая часть (порядка 10%) генов, свойственных К. данного вида организмов. Среди них лишь немногие ответственны за специальную функцию К., а остальные обеспечивают общеклеточные функции. Так, в мышечных К. активны гены, кодирующие структуру сократимых белков, в эритроидных К. - гены, кодирующие биосинтез гемоглобина, и т.д. Однако в каждой К. должны быть активны гены, определяющие биосинтез веществ и структур, необходимых для всех К., например ферментов, участвующих в энергетических превращениях веществ. В процессе специализации К. отдельные общеклеточные функции их могут развиваться особенно сильно. Так, в железистых К. более всего выражена синтетическая активность, мышечные - наиболее сократимы, нервные - наиболее возбудимы. В узкоспециализированных К. обнаруживаются структуры, характерные лишь для этих К. (например, у животных - миофибриллы мышц, тонофибриллы и реснички некоторых покровных К., нейрофибриллы нервных К., жгутики у простейших или у сперматозоидов многоклеточных организмов). Иногда специализация сопровождается утратой некоторых свойств (например, нервные К. утрачивают способность к размножению; ядра К. кишечного эпителия млекопитающих не могут в зрелом состоянии синтезировать РНК; зрелые эритроциты млекопитающих лишены ядра). Выполнение важных для организма функций включает иногда гибель К. Так, К. эпидермиса кожи постепенно ороговевают и гибнут, но остаются некоторое время в пласте, предохраняя подлежащие ткани от повреждения и инфекции. В сальных железах К. постепенно превращаются в капли жира, который используется организмом или выделяется. Для выполнения некоторых тканевых функций К. образуют неклеточные структуры. Основные пути их образования - секреция или превращения компонентов цитоплазмы. Так, значительная по объёму часть подкожной клетчатки, хряща и кости составляет межуточное вещество - производное К. соединительной ткани. К. крови обитают в жидкой среде (плазме крови), содержащей белки, сахара и др. вещества, вырабатываемые разными К. организма. К. эпителия, образующие пласт, окружены тонкой прослойкой диффузно распределённых веществ, главным образом гликопротеидов (так называемый цемент, или надмембранный компонент). Внешние покровы членистоногих и раковины моллюсков - также продукты выделения К. Взаимодействие специализированных К. - необходимое условие жизни организма и нередко самих этих К. (см. Гистология). Лишённые связей друг с другом, например в культуре, К. быстро утрачивают особенности присущих им специальных функций.

Деление клеток . В основе способности К. к самовоспроизведению лежат уникальное свойство ДНК самокопироваться и строго равноценное деление репродуцированных хромосом в процессе Митоз а. В результате деления образуются две К., идентичные исходной по генетическим свойствам и с обновленным составом ядра и цитоплазмы. Процессы самовоспроизведения хромосом, их деления, образования двух ядер и деления цитоплазмы разделены во времени, составляя в совокупности Митотический цикл К. В случае, если после деления К. начинает готовиться к следующему делению, митотический цикл совпадает с жизненным циклом К. Однако во многих случаях после деления (а иногда перед ним) К. выходят из митотического цикла, дифференцируются и выполняют в организме ту или иную специальную функцию. Состав таких К. может обновляться за счёт делений малодифференцированных К. В некоторых тканях и дифференцированные К. способны повторно входить в митотический цикл. В нервной ткани дифференцированные К. не делятся; многие из них живут так же долго, как организм в целом, то есть у человека - несколько десятков лет. При этом ядра нервных К. не утрачивают способности к делению: будучи пересажены в цитоплазму раковых К., ядра нейронов синтезируют ДНК и делятся. Опыты с клетками-гибридами показывают влияние цитоплазмы на проявление ядерных функций. Неполноценная подготовка к делению предотвращает митоз или искажает его течение. Так, в некоторых случаях не происходит деления цитоплазмы и образуется двуядерная К. Многократное деление ядер в неделящейся К. приводит к появлению многоядерных К. или сложных надклеточных структур (симпластов), например в поперечнополосатых мышцах. Иногда репродукция К. ограничивается воспроизведением хромосом, и образуется полиплоидная К., имеющая удвоенный (сравнительно с исходной К.) набор хромосом. Полиплоидизация приводит к усилению синтетической активности, увеличению размеров и массы К.

Обновление клеток. Для длительной работы каждой К. необходимо восстановление изнашиваемых структур, как и ликвидация повреждений К., вызванных внешними воздействиями. Восстановительные процессы, характерные для всех К., связаны с изменениями проницаемости плазматической мембраны и сопровождаются усилением внутриклеточных синтезов, в первую очередь синтеза белка. Во многих тканях стимуляция восстановительных процессов приводит к репродукции генетического аппарата и делению К.; это свойственно, например покровам или кроветворной системе. Процессы внутриклеточного обновления в этих тканях выражены слабо, их К. живут сравнительно недолго (например, К. кишечного покрова млекопитающих - всего несколько суток). Максимальной выраженности внутриклеточные восстановительные процессы достигают в неделящихся или слабоделящихся клеточных популяциях, например в нервных К. Показателем совершенства процессов внутреннего обновления К. является длительность их жизни; для многих нервных К. она совпадает с продолжительностью жизни всего организма.

Мутации. Обычно процесс воспроизведения ДНК происходит без отклонений, и генетический код остаётся постоянным, что обеспечивает синтез одного и того же набора белков в огромном числе клеточных поколений. Однако в редких случаях может произойти мутация (См. Мутации) - частичное изменение структуры гена. Конечный её эффект - изменение свойств белков, кодируемых мутантными генами. Если при этом затрагиваются важные ферментные системы, свойства К., а иногда и всего организма существенно изменяются. Так, мутация одного из генов, контролирующих синтез гемоглобина, приводит к тяжелому заболеванию - анемии (См. Анемия). Естественный отбор полезных мутаций - важный механизм эволюции.

Регуляция функций клеток. Основной механизм регуляции внутриклеточных процессов связан с различными влияниями на ферменты - высоко специфичные катализаторы биохимических реакций. Регуляция может осуществляться на генетическом уровне, когда определяется состав ферментов или количество того или иного фермента в К. В последнем случае регуляция может происходить и на уровне трансляции. Другой тип регуляции - воздействие на сам фермент, в результате чего может происходить как торможение, так и стимуляция его активности. Структурный уровень регуляции - влияние на сборку клеточных структур: мембран, рибосом и т.д. Конкретными регуляторами внутриклеточных процессов могут быть нервные влияния, гормоны, специальные вещества, вырабатываемые внутри К. либо окружающими К. (особенно белки), или же сами продукты реакций. В последнем случае воздействие осуществляется по принципу обратной связи, когда продукт реакции влияет на активность фермента - катализатора этой реакции. Регуляция может осуществляться через транспорт предшественников и ионов, влияния на матричный синтез (РНК, полисомы, ферменты синтеза), изменение формы регулируемого фермента.

Организация и регуляция функций К. на молекулярном уровне определяют такие свойства живых систем, как пространственная компактность и энергетическая экономичность. Важное свойство многоклеточных организмов - надёжность - во многом зависит от множественности (взаимозаменяемости) К. каждого функционального типа, а также от возможности их замены в результате размножения К. и обновления компонентов каждой К.

В медицине используются воздействия на К. для лечения и предупреждения заболеваний. Многие лекарственные вещества изменяют активность определенных К. Так, наркотики, транквилизаторы и болеутоляющие вещества снижают интенсивность деятельности нервных К., а стимуляторы её усиливают. Некоторые вещества стимулируют сокращение мышечных К. сосудов, другие - матки или сердца. Специальные воздействия на делящиеся К. осуществляются при использовании радиации или цитостатических веществ, блокирующих деление К. Иммунизация стимулирует деятельность лимфоидных К., вырабатывающих антитела к чужеродным белкам, предупреждая тем самым многие заболевания.

Лит.: Кольцов Н. К., Организация клетки, М. - Л., 1936; Вильсон Э., Клетка и её роль в развитии и наследственности, пер. с англ., т. 1-2, М. - Л., 1936-1940; Насонов Д. Н. и Александров В. Я., Реакция живого вещества на внешние воздействия, М. - Л., 1940; Кедровский Б. В., Цитология белковых синтезов в животной клетке, М., 1959; Мэзия Д., Митоз и физиология клеточного деления, пер. с англ., М., 1963; Руководство по цитологии, т. 1-2, М. - Л., 1965-66; Бродский В. Я., Трофика клетки, М., 1966; Живая клетка, [Сб. ст.], пер. с англ., М., 1966; Де Робертис Э., Новинский В., Саэс Ф., Биология клетки, пер. с англ., М., 1967; Васильев Ю. М. и Маленков А. Г., Клеточная поверхность и реакции клеток, Л., 1968; Алов И. А., Брауде А. И., Аспиз М. Е., Основы функциональной морфологии клетки, 2 изд., М., 1969; Лёви А., Сикевиц Ф., Структура и функции клетки, пер. с англ., М., 1971; Handbook of molecular cytology, ed. A. Lima-de-Faria, Amst., 1969.

В. Я. Бродский.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Все живое состоит из клеток. Клетка представляет собой элементарную живую систему – основу строения и жизнедеятельности всех животных и растений. Клетки могут существовать как самостоятельные организмы (например, простейшие, бактерии) и в составе многоклеточных организмов. Размеры клеток варьируются в пределах от 0,1–0,25 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе).

Клетка способна питаться, расти и размножаться, вследствие чего ее можно считать живым организмом. Это своеобразный атом живых систем. Составляющие ее части лишены жизненных способностей. Клетки, выделенные из различных тканей живых организмов и помещенные в специальную питательную среду, могут расти и размножаться. Такая способность клеток широко используется в исследовательских и прикладных целях.

Термин «клетка» впервые предложил 1665 г. английский естествоиспытатель Роберт Гук (1635–1703) для описания ячеистой структуры наблюдаемого под микроскопом среза пробки. Утверждение о том, что все ткани животных и растений состоят из клеток, составляет сущность клеточной теории. В экспериментальном обосновании клеточной теории важную роль сыграли труды немецких ученых-ботаников Маттиаса Шлейдена (1804–1881) и Теодора Шванна (1810–1882).

Несмотря на большое разнообразие и существенные различия во внешнем виде и функциях, все клетки состоят из трех основных частей – плазматической мембраны, контролирующей переход вещества из окружающей среды в клетку и обратно, цитоплазмы с разнообразной структурой и клеточного ядра, содержащего носитель генетической информации (см. рис. 7.7). Все животные и некоторые растительные клетки содержат центриоли – цилиндрические структуры диаметром около 0,15 мкм, образующие клеточные центры. Обычно растительные клетки окружены оболочкой – клеточной стенкой. Кроме того, они содержат пластиды – цитоплазматические органоиды (специализированные структуры клеток), нередко содержащие пигменты, обусловливающие их окраску.

Окружающая клетку мембрана состоит из двух слоев молекул жироподобных веществ, между которыми находятся молекулы белков. Главная функция клетки – обеспечить передвижение вполне определенных веществ в прямом и обратном направлениях к ней. В частности, мембрана поддерживает нормальную концентрацию некоторых солей внутри клетки и играет важную роль в ее жизни: при повреждении мембраны клетка сразу гибнет, в то же время без некоторых других структурных компонентов жизнь клетки может продолжаться в течение некоторого времени. Первым признаком умирания клетки являются начинающиеся изменения в проницаемости ее наружной мембраны.

Внутри клеточной плазматической мембраны находится цитоплазма , содержащая водный соляной раствор с растворимыми и взвешенными ферментами, (как в мышечных тканях) и другими веществами. В цитоплазме располагаются разнообразные органеллы – маленькие органы, окруженные своими мембранами. К органеллам, в частности, относятся митохондрии мешковидные образования с дыхательными ферментами. В них превращается сахар и высвобождается энергия. В цитоплазме есть и небольшие тельца – рибосомы, состоящие из белка и нуклеиновой кислоты (РНК), с помощью которых осуществляется синтез белка. Внутриклеточная среда достаточно вязкая, хотя 65–85% массы клетки составляет вода.

Во всех жизнеспособных клетках, за исключением бактерий, содержится ядро , а в нем –хромосомы – длинные нитевидные тельца, состоящие из дезоксирибонуклеиновой кислоты и присоединенного к ней белка.

Клетки растут и размножаются путем деления на две дочерние. При делении дочерней клетки передается полный набор хромосом, несущих генетическую информацию. Поэтому перед делением число хромосом в клетке удваивается и при делении каждая дочерняя клетка получает по одному их набору. Такой процесс деления клеток, обеспечивающий тождественное распределение генетического материала между дочерними клетками, называется митозом .

Не все клетки многоклеточного животного или растения одинаковы. Видоизменение клеток происходит постепенно в процессе развития организма. Каждый организм развивается из одной клетки – яйца, которое начинает делиться, и в конечном итоге образуется множество отличающихся друг от друга клеток – мышечные, кровяные и др. Различия клеток определяются прежде всего набором белков, синтезируемых данной клеткой. Так, клетки желудка синтезируют пищеварительный фермент пепсин; в других клетках, например клетках мозга, он не образуется. Во всех клетках растений или животных имеется полная генетическая информация для построения всех белков данного вида организмов, но в клетке каждого типа синтезируются лишь те белки, которые ей нужны.

В зависимости от типа клеток все организмы делятся на две группы – прокариот и эукариот. К прокариотам относятся бактерии, а к эукариотам – все остальные организмы: простейшие, грибы, растения и животные. Эукариоты могут быть одноклеточными и многоклеточными. Тело человека, например, состоит из 10 15 клеток.

Прокариоты все одноклеточные. В них нет четко очерченного ядра: молекулы ДНК не окружены ядерной мембраной и не организованы в хромосомы. Их деление происходит без митоза. Размеры их относительно небольшие. В то же время наследование признаков в них основано на передаче ДНК дочерним клеткам. Предполагается, что первыми организмами, появившимися около 3,5 млрд лет назад, были прокариоты.

Если одноклеточный организм, например бактерия, не гибнет от внешнего воздействия, то он остается бессмертным, т. е. не умирает, а делится на две новые клетки. Многоклеточные организмы живут лишь определенное время. Они содержат два типа клеток: соматические – клетки тела и половые клетки. Половые клетки, так же как и бактерии, бессмертны. После оплодотворения образуются соматические клетки, которые смертны, и новые половые.

Растения содержат особую ткань – меристему , клетки которых могут образовывать другие типы клеток растений. В этом отношении клетки меристемы похожи на половые и в принципе тоже бессмертны. Они обновляют ткани растений, поэтому некоторые виды растений могут жить тысячи лет. У примитивных животных (губки, актинии) есть подобная ткань, и они могут жить неограниченно долго.

Соматические клетки высших животных делятся на два вида. Одни из них включают клетки, живущие недолго, но постоянно возобновляющиеся за счет своего рода ткани меристемы. К ним относятся, например, клетки эпидермиса. Другой вид составляют клетки, которые во взрослом организме не делятся, и поэтому не возобновляются. Это прежде всего нервные и мышечные клетки. Они подвержены старению и гибели.

Принято считать, что главная причина старения организма – утеря генетической информации. Молекулы ДНК постепенно повреждаются мутациями, что приводит к гибели клеток и всего организма. Поврежденные участки молекулы ДНК способны восстанавливаться благодаря репаративным ферментам. Хотя их возможности ограничены, но они играют важную роль в продлении жизни организма.

Энциклопедия Биология. 2012

Смотрите еще толкования, синонимы, значения слова и что такое КЛЕТКА в русском языке в словарях, энциклопедиях и справочниках:

  • КЛЕТКА в Соннике Миллера, соннике и толкованиях сновидений:
    Если во сне Вы видите клетку, полную птиц, то будете счастливым обладателем невероятного богатства и множества очаровательных детишек. Видеть только …
  • КЛЕТКА в Медицинских терминах:
    (-и) (cellula, -ae, lnh) элементарная живая система, состоящая из двух основных частей - ядра и цитоплазмы, способная к самостоятельному существованию, …
  • КЛЕТКА в Большом энциклопедическом словаре:
    элементарная живая система, основа строения и жизнедеятельности всех животных и растений. Клетки существуют как самостоятельные организмы (напр., простейшие, бактерии) и …
  • КЛЕТКА в Большой советской энциклопедии, БСЭ:
    элементарная живая система, способная к самостоятельному существованию, самовоспроизведению и развитию; основа строения и жизнедеятельности всех животных и растений. К. существуют …
  • КЛЕТКА в Энциклопедическом словаре:
    , -и, ж. 1. Помещение со стенками из поставленных с промежутками прутьев. К. для птиц, для зверей. 2. Отдельный квадрат …
  • КЛЕТКА в Большом российском энциклопедическом словаре:
    КЛ́ЕТКА, элементарная живая система, основа строения и жизнедеятельности всех ж-ных и р-ний. К. существуют как самостоят. организмы (напр., простейшие, бактерии) …
  • КЛЕТКА в Словаре Кольера:
    элементарная единица живого. Клетка отграничена от других клеток или от внешней среды специальной мембраной и имеет ядро или его эквивалент, …
  • КЛЕТКА в Полной акцентуированной парадигме по Зализняку:
    кле"тка, кле"тки, кле"тки, кле"ток, кле"тке, кле"ткам, кле"тку, кле"тки, кле"ткой, кле"ткою, кле"тками, кле"тке, …
  • КЛЕТКА
    Домик для …
  • КЛЕТКА в Словаре для разгадывания и составления сканвордов:
    Птичья …


Поделиться