Тема: Конструктивные решения кирпичных стен. Наружные стены и их элементы Конструктивные решения наружных стен зданий старой застройки

Доля стеновых материалов в цене объекта загородной недвижимости составляет 3- 10%. При этом влияние материала стен на комфортность проживания остается по- прежнему высоким. Даже просторечное название дома определяется конструкцией его стен.

Комфорт в доме зависит не только от того, из чего сделаны стены. Факторов, влияющих на комфорт, очень много. Но выбор материала стен определяет базовые характеристики дома, которые навсегда останутся с ним и никуда не денутся ни при замене системы отопления, ни при ремонте крыши. Даже устное определение дома основано на выборе стенового материала: каменный, деревянный, каркасный. Конструкция стены представляется основополагающей характеристикой строения даже на бытовом уровне.

В этой статье не будет сказано ни слова о достоинствах и недостатках различных материалов с точки зрения экологичности, долговечности или влияния на микроклимат помещений. Эти вопросы заслуживают отдельного рассмотрения.
Наша статья посвящена другому аспекту выбора: вероятности появления скрытых дефектов. Речь пойдёт о том, насколько реально достичь тех характеристик, которые заявляются производителями и используются в расчетах конструкторами, теплотехниками и другими специалистами.

В общем случае стена – это:

  1. Конструктивное решение стены (несущие, теплоизолирующие, паро- ветрозащитные, отделочные и т.д. слои);
  2. Конструктивное решение отдельных ее узлов (схема установки окон и дверей, примыкание перекрытий, крыши, перегородок, прокладка коммуникаций и другие неоднородности);
  3. Фактическое исполнение принятых конструктивных решений.

Реализуемость проектных решений

Формальных критериев надежности и реализуемости нет. Оценить устойчивость к браку на основе нормативов мы не можем. Поэтому определим реализуемость проектных решений исходя из соображений здравого смысла.

Устойчивость к браку складывается из двух составляющих:

  1. Принципиальная возможность допустить случайный брак при добросовестном производстве работ;
  2. Возможность проверить качество готовой стены без разборки, без применения сложного оборудования и в любое время года.

Обе эти составляющих одинаково важны при выборе конструктивного решения стены. А в зависимости от того, своими руками или с привлечением подрядчиков ведется строительство, акцент при выборе конструктива стены может смещаться от вероятности случайного брака к возможности визуальной оценки качества уже выполненных работ.

Краткая классификация наружных стен

1. Несущий каркас с заполнением. Пример: силовой каркас – доски или металлический профиль, обшивка и заполнение (по слоям изнутри наружу) – ГВЛ (ГКЛ, OSB), п/э пленка, утеплитель, ветрозащита, облицовка.

2. Несущая стена с наружным утеплением с разделением несущей и теплоизолирующей функций между слоями. Пример: стена из кирпича, камней или блоков с наружным утеплителем (пенополистирол или минераловатная плита) и облицовкой (лицевой кирпич, штукатурка, навесной фасад с воздушным зазором).

3. Однослойная стена из материала, выполняющего и несущую и теплоизолирующую функции. Пример: бревенчатая стена без отделки или оштукатуренная кирпичная стена.

4. Экзотические системы с несъёмной опалубкой уберем из рассмотрения из-за малой распространенности.


Попробуем понять, на каких этапах строительных работ возможно отклонение от проектных решений и возникновение брака.

Каркасные конструкции

При упоминании каркасных построек нет необходимости отдавать пальму первенства в их изобретении Канаде. Щитовые домики появились у нас задолго до падения «железного занавеса». А потому оценить их надежность нам вполне посильно. Конструктив: вертикальные и горизонтальные силовые элементы каркаса, раскосы или листовая обшивка, придающие конструкции жесткость.

Никаких вопросов к реализуемости собственно каркаса не возникает – собранный каркас позволяет простейшими средствами оценить свое качество. Визуальная ровность и проверяемая жесткость при приложении горизонтальных нагрузок являются достаточными для приемки каркаса в эксплуатацию. Другое дело – слои, призванные обеспечить тепловую защиту.

Утеплитель . Должен плотно заполнять все полости, образованные силовыми элементами. Задача, труднореализуемая при шаге между элементами каркаса, отличающемся от габаритов плитного утеплителя. И почти не реализуемая при наличии диагональных раскосов в структуре каркаса (конечно, существуют и заливочный, и засыпной утеплители, лишенные этих недостатков – здесь речь идет о наиболее ходовых вариантах заполнения).

Пароизоляция . Слой пленки с высоким сопротивлением паропроницанию. Должен быть установлен с герметизацией стыков, без ослабления перфорацией от механических элементов крепления, с особо тщательным исполнением вокруг оконных и дверных проемов, а также в местах выхода из стены коммуникаций, запрятанных в толщу утеплителя электро- и других разводок и пр. В теории, пароизоляцию можно сделать добротно и тщательно. Но в случае, если вы – заказчик, получающий готовую конструкцию, качество пароизоляции уже обшитой изнутри стены не проверяемо.

Стены с наружным утеплением

Конструктивное решение, распространившееся в последние двадцать лет, одновременно с ужесточением нормативных требований к теплозащите и ростом цен на энергию. Наиболее распространены два варианта:

  • несущая каменная стена (200–300 мм) + утеплитель + облицовка в 1⁄2 кирпича (120 мм);
  • несущая каменная стена (200–300 мм) + приклеенный и закрепленный дюбелями утеплитель + армированная штукатурка по утеплителю или воздушный зазор, ветровая защита и листовая облицовка.

Вопросов к несущему слою стены практически нет. Если стена сложена достаточно ровно (без явных отклонений от вертикали), ее несущей способности практически всегда будет достаточно для выполнения своей основной – несущей – функции. (В малоэтажном строительстве прочностные характеристики стеновых материалов редко когда используются полностью.)

Утеплитель . Приклеенный на несущую стену, закрепленный к ней механически, укрытый слоем армированной штукатурки, он не вызывает вопросов. Можно ошибиться в выборе клея, дюбелей, штукатурного состава – тогда спустя какое-то время слой теплоизоляции или отделки начнет отставать от стены. В целом же – качество проверяемо средствами визуального контроля, а всплывающий брак очевиден.

Качество работ при навесном фасаде с воздушным зазором уже не столь очевидно. Для проверки плотности установки утеплителя необходим демонтаж облицовки, монтаж ветровой защиты также требует промежуточной приемки.

При облицовке утеплителя кирпичом качество его установки невозможно проверить даже тепловизором. А устранить брак можно только после демонтажа облицовки (читай – сноса кирпичной стены).

Однослойные стены

Стена из бревна или бруса, сложенная с применением качественного межвенцового уплотнителя и ничем не обшитая, поверяется на соответствие проекту простым осмотром. Растрескивание древесины, уменьшающее приведенную толщину бревна на 40-60%, и усадку в 6-8% здесь мы рассматривать не будем.

Пустотелые камни . К ним относятся пустотные бетонные блоки и многопустотная крупноформатная керамика. Пустотелые блоки из тяжелого бетона не обеспечат требуемого термического сопротивления, а потому могут выступать лишь как часть стены из предыдущего раздела. Однослойная стена из крупноформатной керамики, оштукатуренная с двух сторон, гарантировано защищена от продувания. Ее тонкие места: углы, отличные от 90 ̊ и кладочные швы.

Обработка хрупких многощелевых блоков для создания не прямого угла, ведет к образованию ажурной стыкуемой поверхности и толстому вертикальному растворному шву. Но значительно большее влияние на отклонение стены от расчетных характеристик оказывают горизонтальные кладочные швы. Во-первых, сами по себе они уже являются мостиками холода. Во-вторых, по правилам, во избежание заполнения пустот раствором, поверх камня до укладки раствора положено раскатывать стекловолоконную сетку с ячейкой 5х5 мм. При этом следует тщательно контролировать подвижность раствора, чтобы не допустить его протекания сквозь ячейки сетки.

Таким образом, возникновение случайного брака возможно даже при добросовестном производстве работ. При производстве работ силами подрядчика, возможность оценить качество кладки без применения тепловизора отсутствует.

Полнотелые камни. К ним относятся стеновые блоки из ячеистого или лёгкого бетона и полнотелый кирпич. Качество стены из полнотелого кирпича можно оценить издалека невооруженным глазом, поэтому говорить о скрытом браке применительно к такой кладке не приходится. Недостаток полнотелого кирпича, как и камней из бетона с большой плотностью – относительно высокая теплопроводность. Такие стены требуют дополнительной теплоизоляции, что возвращает нас в предыдущий раздел, к стенам с наружным утеплением.

Остаются ячеистобетонные блоки. При плотности более 500 кг/м3, а также при использовании обычного цементно-песчаного раствора с толщиной шва более 10 мм, возникает целесообразность дополнительного утепления стены, что лишает ее конструкцию изящной простоты. И только ячеистый бетон с плотностью до 500 кг/м3, с высокой геометрической точностью блоков, позволяющей вести кладку на тонкослойном растворе, дает нам конструкцию столь простую, что возникновение в ней скрытого брака попросту невозможно.

Однослойная стена из ячеистого бетона низкой плотности с клеевыми швами толщиной 1-3мм.

Испортить ее не просто. Например, блоки можно сложить насухо, без какого бы то ни было скрепления друг с другом, просто как детские кубики. Если потом такую стену оштукатурить с двух сторон по сетке – она будет выполнять все возложенные на нее задачи на 100%. Тепловая защита сложенной насухо (и оштукатуренной с двух сторон) конструкции не снизится, а даже несколько вырастет за счет отсутствия теплопроводных растворных прослоек. При этом способность к восприятию вертикальных нагрузок, общая жесткость и устойчивость такой стены при наличии обвязочного пояса в уровне перекрытия не будут отличаться от расчетных.

Точность геометрических размеров, крупный формат блоков и тонкослойный̆ клей обеспечивают принципиальную невозможность сложить кладку с заметными отклонениями от вертикали или какими-либо неровностями. Кладка автоматически получается ровной даже у неопытного каменщика. Углы, отличные от 90 ̊, выполняются при помощи обычной ручной ножовки. Подготовка под чистовую отделку производится простой шпаклевкой швов, т.е. столь же легко, как перед отделкой гипсокартонной поверхности.

По защищенности от скрытых дефектов однослойной̆ стене нет равных. По защищенности от дефектов вообще, как скрытых, так и явных, равных нет однослойной стене из ячеистобетонных блоков плотностью до 500 кг/м3. Только такая стена, выполненная в материале, гарантированно будет соответствовать принятому проектному решению.

Стена здания - основная ограждающая конструкция здания. Наряду с ограждающими функциями стены одновременно в той или иной степени выполняют и несущие функции (служат опорами для восприятия вертикальных и горизонтальных нагрузок).

Основные требования, предъявляемые к стенам: прочность, теплоустойчивость, звукоизоляционная способность, огнестойкость, долговечность, архитектурная выразительность и экономичность.

Различают наружные и внутренние стены. По характеру статической работы наружные стены подразделяют на несущие, которые, кроме собственного веса, воспринимают и передают на фундамент нагрузки от перекрытий, покрытий, давление ветра и др.; самонесущие, опирающиеся на фундамент, несущие нагрузку только от собственного веса (в пределах всех этажей здания) и для обеспечения устойчивости сопряжённые с каркасом здания: ненесущие (в т. ч. навесные), воспринимающие собственный вес только в пределах одного этажа и передающие его на каркас или др. опорные конструкции здания. Внутренние стены могут быть несущими (капитальными) или ненесущими (перегородки, предназначены только для разделения помещений, их устанавливают непосредственно на перекрытии). Во внутренних стенах часто устраивают каналы и ниши для вентиляции, газоходов, водопроводных и канализационных труб и т.д. Несущие стены совместно с перекрытиями образуют устойчивую пространственную систему несущего остова здания. В каркасных зданиях самонесущие стены нередко выполняют функции т. н. диафрагм жёсткости.

По способу возведения стены подразделяют на сборные, монтируемые из готовых элементов заводского изготовления; монолитные - обычно бетонные, возводимые в передвижной или скользящей опалубке, ручной кладки - из мелкоштучных материалов на растворах. В зависимости от крупности сборных элементов, степени их заводской готовности и принятой системы разрезки различают сборные стены крупноблочные и крупнопанельные. По конструктивному решению стены бывают однослойные и многослойные.

Материалы для возведения стены выбираются в зависимости от климатических условий, назначения и капитальности здания, его этажности, от технической и экономической целесообразности. При многоэтажном строительстве зданий с несущими стенами используют кирпич, керамические камни, крупные блоки из лёгких и ячеистых бетонов, железобетонные панели и др. крупноразмерные изделия. Ненесущие стены, вес которых должен быть минимален, изготовляют из многослойных железобетонных панелей с эффективным утеплителем, панелей из особо лёгких бетонов, асбестоцементных панелей. В малоэтажном строительстве применяют дерево, силикатный и сырцовый кирпич, шлакобетонные, керамические и природные камни.

Стены во многом определяют конструктивное решение и общий архитектурный облик здания. Название материала стены часто характеризует архитектурно-конструктивный тип дома: крупнопанельный, крупноблочный, кирпичный, деревянный рубленый, каркасно-щитовой и т.п.

Стена несущие или самонесущие представляют собой трехслойную конструкцию с несущем слоем из полнотелого керамического кирпича толщиной (250,380,510,640мм) а также из бетонных блоков или монолитного железобетона со слоем теплоизоляции из литого пенополистирола.

Защитно декоративный слой может быть выполнен тонкослойной штукатуркой толщиной 5-8мм по щелочестойкой стеклосетке или стенкой из керамического полнотелого кирпича толщиной 120мм.

В деревянном домостроение стена с эффективной теплоизоляцией выполняется каркасно-обшивной.

При устройстве стен с защитным слоем из штукатурки необходимо чтобы:

Защитная штукатурка имела нулевой предел распространения огня и была армирована щелочестойкой стеклосеткой,

Облик фасадов зданий, в первую очередь, формируют стены. Поэтому каменные стены должны отвечать соответствующим эстетическим требованиям. Кроме того, стены подвергаются многочисленным силовым, влажностным и другим воздействиям: собственная масса, нагрузки от перекрытий и крыш, ветер, сейсмические толчки и неравномерная деформация оснований, солнечная радиация, переменная температура и атмосферные осадки, шум и др. Поэтому стены должны отвечать требованиям прочности, долговечности, огнестойкости, защищать помещения от неблагоприятных внешних воздействий, обеспечивать в них благоприятный температурно-влажностный режим для комфортного проживания и трудовой деятельности.

В комплекс конструкции стен часто входят заполнения проемов окон и дверей, другие конструктивные элементы, которые также должны отвечать указанным требованиям.

По степени пространственной жесткости здания с каменными стенами можно разделить на здания с жесткой конструктивной схемой, к которым относятся здания с частым расположением поперечных стен, т.е. преимущественно гражданские здания, и здания с упругой конструктивной схемой, к которым относятся одноэтажные производственные, складские и другие подобные здания (в них продольные стены имеют значительную высоту и большие расстояния между поперечными стенами).

В зависимости от назначения здания или сооружения, действующих нагрузок, этажности и других факторов каменные стены подразделяются:

  • ? на несущие, воспринимающие все вертикальные и горизонтальные нагрузки;
  • ? самонесущие, воспринимающие только собственную массу;
  • ? ненесущие (фахверковые), в которых каменная кладка используется как заполнение панелей, образованных ригелями, раскосами и стойками каркаса.

Прочность каменных стен в большой степени зависит от прочности кладки:

где А - коэффициент, зависящий от прочности камня; R K - прочность камня; R p - прочность раствора.

В соответствии с этим, даже если прочность раствора будет равна О, кладка будет иметь прочность, равную 33% ее максимально возможной прочности.

Для обеспечения совместной работы и образования пространственной коробки стены обычно связывают друг с другом, с перекрытиями и каркасом при помощи анкеров. Поэтому устойчивость и жесткость каменных стен зависят не только от их собственной жесткости, но и от жесткости перекрытий, покрытий и других конструкций, которые обеспечивают опирание и закрепление стен по их высоте.

Стены бывают сплошными (без проемов) и с проемами. Сплошные стены без конструктивных элементов и архитектурных деталей называются гладкими. Различают следующие конструктивные элементы стен (рис. 7.1):

  • ? пилястры - вертикальные выступы на поверхности стены прямоугольного сечения, служащие для членения плоскости стены;
  • ? конфорсы - такие же выступы, увеличивающие устойчивость и несущую способность стены;
  • ? пилоны - кирпичные или каменные столбы, служащие опорой перекрытия или оформляющие вход в здание;
  • ? обрез кладки - место перехода по высоте от цоколя к стене;
  • ? поясок - напуск ряда кладки в целях расчленения отдельных частей фасада здания по его высоте;
  • ? сандрик - небольшой навес над проемами на фасаде здания;
  • ? карниз - напуск нескольких рядов кладки (не больше 1 /3 кирпича в ряду);
  • ? борозды - протяженные вертикальные или горизонтальные углубления в кладке для сокрытий коммуникаций;
  • ? ниши - углубления в кладке, в которых располагают приборы отопления, электрические и другие шкафы;
  • ? простенки - участки кладки, расположенные между соседними проемами;
  • ? притолоки (четверти) - выступы кладки в наружной части стены и простенков для установки оконных и дверных заполнений;
  • ? деревянные пробки (бобышки) - бруски, устанавливаемые в кладке для крепления оконных и дверных коробок.

Рис. 7.1. Конструктивные элементы стен: а - пилястры; б - контрфорсы; в - пилоны; г - обрез кладки; д - поясок; е - сандрик; ж - карниз; з - борозды; и - ниши; к - простенки; л - притолоки; м - деревянные пробки

Кладку стен ведут с обязательной перевязкой вертикальных швов. С наружной стороны стены ряды кладки могут чередоваться следующим образом:

  • ? тычковые с тычковыми;
  • ? ложковые с ложковыми;
  • ? ложковые с тычковыми;
  • ? тычковые со смешанными;
  • ? одни смешанные.

На практике наибольшее распространение получили системы с чередующимися ложковыми и тычковыми рядами. Чем больше смежных ложковых рядов, тем кладка получается менее прочной (но и менее трудоемкой), так как увеличивается число продольных вертикальных рядов и уменьшается число кирпичей, которые подвергаются колке на части. Поэтому при выборе системы перевязки кладки ориентируются на эти показатели. Широкое распространение получили системы перевязки каменных стен, приведенные на рис. 7.2.


Рис. 7.2. Системы перевязки кладки каменных стен: а, б, в, г - однорядная, соответственно цепная, крестовая, голландская, готическая; д - двухрядная английская; е - двухрядная с вставными тычками; ж - трехрядная; з - пятирядная; и - разрез стены при пятирядной перевязке; к - разрез стены при однорядной перевязке

Стена состоит из внутреннего (несущего) и наружного (самонесущего) слоёв кирпича плотностью 1800кг/м 3 , между которыми укладываются эффективные теплоизоляционные плиты толщиной 100,150,200 и 250мм.

Наружный слой кладки толщиной 120мм, по этажно, соединяются гибкими связями с внутренним слоем, толщиной от 250 до 640мм, определяемой по расчёту.

Для восприятия нагрузки от наружного слоя стены и утеплителя предусматриваются следующие конструктивные решения:

Перекрытия продлеваются до наружного слоя фасадной стены с устройства шпонок для пропуска утеплителя;

Установка специальных керамзитных балочек с операнием их на поперечные несущие стены, если здание имеет поперечно-стеновую систему;

Устройством керамзитобетонной рамки, заделанной в несущий слой (при продольно-стеновой системе).

В слоистой конструкций при выборе типа утеплителя следует учитывать, что материал должен быть не горючим, водоотталкивающим и иметь плотность не более 150кг/м 3 .

Обычно используются минеральные, стекловатные плиты, негорючий пенапалестерол.

В современных конструктивных решениях зданий иногда применяют комбинированную строительную систему: - кирпичные наружные (сплошной и эффективной кладки), стены в сочетании с внутренними несущими стенами из сборных железобетонных панелей.

Все связи между стенами осуществляют при помощи стальных анкеров, стержней, закладных деталей

1/4=65мм – перегородка для ванной и туалетов

1/2=120мм – перегородка межкомнатная

1=250мм – самонесущая стена

1,5=380 мм – несущая стена либо стена с вентканалами

2,5=640мм наружная стена (старого образца)

Тема: Конструкций зданий со стенами ручной кладки.

Кирпичная кладка – называют способ размещения кирпичей в кладке стены с тем или иным чередованием ложковых или тычковых рядов для достижения перевязки швов.

Рисунок 1.Расположение кирпичей в кирпичной стене:

а - стандартный кирпич, б - ложковый ряд, в - тычковый ряд,1-тычок,2-постель кирпича,3-ложок

Каменные стены зданий возводят из глиняного и силикатного кирпича, керамических блоков, искусственных и естественных камней правильной формы. Каменные стены возводят укладкой строго горизонтальных рядов кирпича, или камней по слою известкового, известково-песчаного цементного или цементно-песчаного раствора с взаимной перевязкой вертикальных швов. Различают камни для, одноручной, кладки кирпича массой до 4,5кг и камни для, двуручной, кладки – керамические пустотелые камни плоскостью до 1400кг, м 3 . Легкобетонные сплошные и пустотелые плотностью до 1200кгмз, из бетона, пенобетона плотностью до 600кг/м 3 , камни для, двуручной, кладки имеют массу 16-18кг.

Рисунок 3 Стены

а - из утолщенного кирпича; б - из пустотелого кирпича; в- из керамического камня

Для обеспечения высокой производительности труда сплошную кладку ведут преимущественно шести рядной (пять ложковых и один перевязочный ряд). При необходимости повышения прочности применяют двух рядную (цепную) кладку, в которой перевязка швов осуществляется в каждом ряду.

Рисунок 3.Система перевязки кирпичной кладки

а – цепная (однорядная); б - многорядная; 1-кирпич тычкового ряда; 2-кирпич ложкового ряда

Кладку стен из искусственных и природных камней выполняют двух или трёх рядной (два лажковых и один тычковый ряд) кладкой.

Для того, что бы улучшить технико-экономические и теплотехнические показатели, кирпичные стены выполняют из эффективных облегчённых кладок, в которых часть кирпича внутренней стены заменена монолитным лёгким бетоном.

Рисунок 4.Конструкции облегчённых кирпичных стен:

а, б - кирпично-бетонные, с заполнителем из лёгкобетонной массы; в - с термовкладишами из готовых камней

из лёгкого или ячеистого бетона

Стены облегчённой кладки представляет собой трёхслойную конструкцию из двух продольных стенок толщиной 1,2 кирпича и утеплителя между ними.

В облегчённой кладке возводят малоэтажные здания или верхние три-пять этажей многоэтажных.

Известно, что однослойные ограждающие конструкции из известных на сегодняшний день строительных материалов не могут обеспечить требуемую по современным энергосберегающим нормам тепловую защиту здания, в связи с этим, необходимо изначально предусматривать многослойное ограждение, имеющее в своем составе эффективный утеплитель, а в ряде случаев - воздушную вентилируемую прослойку.

При разработке конструктивного решения стен и покрытия исходили из требований к расчетным сопротивлениям ограждающих конструкций по III уровню теплозащиты [ КМК ].

В соответствие с этим нормативным документом предписано расчетные сопротивления теплопередаче принимать в зависимости от величины градусо-суток отопительного периода (ГСОП), определяемого по формуле (2.6).

Для города Ташкента необходимые для расчета параметры, определенные по КМК 2.01.01-94 , составили:

  • - температура наиболее холодных суток с обеспеченностью 0,92 и пятидневки с обеспеченностью 0,98 равна tн= - 160С;
  • - средняя температура отопительного периода tот.пер=+2,70С;
  • - продолжительность отопительного периода Zот.пер=129 суток.

Температура воздуха внутри помещений для обеспечения достаточного уровня комфортности принималась равной tв= +200С.

Тогда ГСОП= (20 - 2,7)х129= 2232 град х сут.

При таком значении ГСОП по изменению 1 к КМК 2.01.04-07 принимаем:

  • - для стен зданий расчетное сопротивление теплопередаче по зимним условиям эксплуатации Rтр0=2, 1 м2·0С/Вт;
  • - для покрытий Rтр0=2,8 м2·0С/Вт.

Теплотехнические расчеты выполнялись с использованием программного комплекса «BASE» (версия 7.3).

Наружные стены для расчета были приняты следующего конструктивного решения (рис.3.12):

  • - цементно-песчаный раствор М50, толщиной 20 мм;
  • - кирпич глиняный обыкновенный М75 на цементно-песчаном растворе марки М-50 толщиной 380 мм;
  • - утеплитель из пенополистирола;
  • - цементно-песчаный раствор М50, толщиной 20 мм.

Рис. 3.12.

В результате расчета была принята толщина утеплителя 80 мм. Затем принятая конструкция была проверена на теплоустойчивость по летним условиям эксплуатации.

Результаты расчета

1. - Исходные данные:

Тип здания - Административные.

Тип конструкции - СТЕНА

Таблица 3.1

Характеристика ограждения:

Требуется произвести:

максимальное 744 Вт/м2

среднее 275 Вт/м2

Отделка наружней поверхности: Штукатурка цементная кремовая

Коэффициент поглощения солнечной радиации 0.4

2. - Выводы:

Требуемое сопротивление ограждения теплопередаче 2,1 м2*град/Вт

Фактическое (приведенное) сопротивление ограждения теплопередаче 2,21 м2*град/Вт


Таблица 3.2

Фактическое сопротивление воздухопроницанию 656,45 м2*ч*Па/кг

Амплитуда колебаний температуры внутренней поверхности 0,04 град.С

Заполнение оконных проемов и остекление оранжерей приняты без расчета, исходя из имеющейся в Узбекистане номенклатуры изделий такого назначения, - однокамерные стеклопакеты в пластмассовых переплетах из обычного стекла с приведенным сопротивлением теплопередаче равном 0,36 м2·0С/Вт.

Конструктивное решение покрытия мансардного этажа для расчета было принято следующее (рис.3.13):

  • - гипсокартон толщиной 10 мм;
  • - деревянный сплошной настил толщиной 20 мм;
  • - утеплитель из экструдированного пенополистирола 40000С;
  • - пароизоляционный слой из пергамина кровельного толщиной 0,4 мм;
  • - воздушное пространство толщиной 40 мм;
  • - металлочерепица.

Рис. 3.13.

Вставить распечатку расчета на теплопередачу

В результате расчета была принята толщина утеплителя 140 мм. Затем принятая конструкция была проверена на теплоустойчивость по летним условиям эксплуатации.

Результаты расчета

Теплотехнический расчет ограждающих конструкций

1. - Исходные данные:

Тип здания - Общественные, административные, бытовые

Тип конструкции - ПОКРЫТИЕ

Условия эксплуатации ограждения:

Температура наружнего воздуха -16 град.

Температура внутреннего воздуха 20 град.

Средняя температура отопительного периода -2,7 град.

Продолжительность отопительного периода 129 дней

Таблица 3.3

Характеристика ограждения:

Номер слоя

Толщина, м

Наименование

Величина

Ед. измерения

Материал слоя

Теплопроводность

Вт/(м*град)

Гипсокартон

Теплопроводность

Вт/(м*град)

Пергамин

Теплопроводность

Вт/(м*град)

Пенополистирол G=100кг/м3

Теплопроводность

Вт/(м*град)

Пергамин

Теплопроводность

Вт/(м*град)

Коэффициент теплоотдачи внутренней поверхности 8,7 Вт/(м2*град)

Коэффициент теплоотдачи наружней поверхности 23 Вт/(м2*град)

Режим работы ограждающей конструкции:

Эксплуатация; режим помещений - Нормальный (55%); зона влажности - Нормальный

Требуется произвести:

Проверку ограждения на сопротивление теплопередаче

Расчет ограждающей конструкции на теплоустойчивость

Расчет ограждающей конструкции на воздухопроницаемость

Среднемесячная температура за июль 27,1 град.

Амплитуда суточных колебаний воздуха в июле месяце 23,7 град.

Минимальная скорость ветра за июль 1,4 м/с

Значение суммарной солнечной радиации, для стен - как для вертикальных поверхностей, для покрытий - как для горизонтальных:

максимальное 1022 Вт/м2

среднее 497 Вт/м2

Отделка наружней поверхности: Сталь кровельная оцинкованная

Коэффициент поглощения солнечной радиации 0.65

Высота здания до верха вытяжной шахты 11,7 м

Максимальная скорость ветра за январь месяц 2,1 м/с

2. - Выводы:

Сопротивление ограждения теплопередаче ДОСТАТОЧНО

Требуемое сопротивление ограждения теплопередаче 2,8 м2*град/Вт

Фактическое (приведенное) сопротивление ограждения теплопередаче 2,95 м2*град/Вт


Таблица 3.4

Температура на контакте слоев ограждения:

Фактическое сопротивление воздухопроницанию 13000160 м2*ч*Па/кг

Нормируемое сопротивление воздухопроницанию 24,87 м2*ч*Па/кг

Сопротивления паропроницаемости ДОСТАТОЧНО.

Амплитуда колебаний температуры внутренней поверхности 0,96 град.С

Нормируемая амплитуда колебаний температуры поверхности 1,89 град.С

Теплоустойчивости ограждающей конструкции ДОСТАТОЧНО.

Вставить распечатку расчета на теплоустойчивость

Не меньшее значение придается в практике проектирования и утеплению полов первого этажа здания, так как через полы, устроенные без теплоизоляции, проходят большие потери тепла. Помимо уменьшения потерь тепла, теплоизоляция пола позволяет более эффективно использовать их теплоемкость. Температура же поверхности пола является основным фактором, определяющим степень комфортности помещений. В нашем случае для утепления пола всех помещений первого этажа, за исключением холла, принято конструктивное решение, представленное на рис. 3.14.


Рис. 3.14.

Был произведен расчет по определению термического сопротивления утепленного пола и неутепленного пола холла.

Вставить расчеты

Таким образом, расчетное сопротивление утепленного пола составило Rо ут.п.= 0,57 м2·0С/Вт; а «холодного» пола холла Rо холл..п.= 0,39 м2·0С/Вт;

В завершении была выполнена проверка запроектированной оболочки здания на повышенную теплозащиту по формуле (2.8).

В запроектированном здании были определены площади ограждающих конструкций, которые составили:

  • - площадь стен - 652 м2;
  • - площадь кровли - 357 м2;
  • - площадь утепленного пола - 139 м2;
  • - площадь холодного пола - 104 м2;
  • - площадь остекления - 166 м2;

Тогда расчетное сопротивление наружной оболочки здания составит: Rоб=(Rст Sст+RокSок+0,8 RкрSкр+ 0,5RоснSосн+ 0,5Rаб Sаб)/Sоб = 2,21*485+ +0,36*166+0,8*357*2,95+0,5(0,57*139+104*0,39)=1,62 м2. 0С /Вт.

Так как полученное значение на 45% превышает требуемую величину, то можно уменьшить толщину теплоизоляционного слоя на стеновых панелях и покрытии мансардного этажа, а также нет необходимости утеплять пола 1го этажа.

Уменьшаем толщину утеплителя на стенах с 80 мм до 60 мм, при этом Rст = 1,82 м2. 0С /Вт; уменьшаем толщину утеплителя в покрытии с 140 мм до 100 мм при этом Rкр = 2,15 м2. 0С /Вт. Расчетное сопротивление всей поверхности пола 1го этажа принимаем Rосн = 0,39 м2. 0С /Вт. Для этого решения теплозащиты:

Rоб=(Rст Sст+RокSок+0,8 RкрSкр+ 0,5RоснSосн+ 0,5Rаб Sаб)/Sоб = 1,82*485+ +0,36*166+0,8*357*2,15+0,5(243*0,39)=1,23 м2. 0С /Вт.

Rоб =1,23 > 1,21 м2. 0С /Вт полученные решения является наиболее экономичным, соответствует европейским требованием к повышенной теплозащите зданий.



Поделиться