Цилиндрических конических фасонных поверхностей как. Способы обработки конических поверхностей

Наружные и внутренние конусы длиной до 15 мм обрабатывают резцом 1, главная режущая кромка которого устанавливается под требуемым углом а к оси конуса, осуществляя продольную или поперечную подачу (рис. 30, а). Этот способ применяется в том случае, когда обрабатываемая заготовка жесткая, угол уклона конуса большой, а к точности угла уклона конуса, шероховатости поверхности и прямолинейности образующей не предъявляют высоки требований.

Рис. 30.





Внутренние и наружные конусы небольшой длины (но длиннее 15 мм) при любом угле наклона обрабатывают при повернутых верхних салазках (рис. 30,б). Верхние салазки суппорта 1 устанавливают под углом в осевой линии станка, равным углу уклона обтачиваемого конуса, по делениям на фланце 2 поворотной части суппорта. Угол поворота отчитывается от риски, нанесенной на поперечных салазках суппорта.

Обработка наружных конусов при смещенной задней бабке применяется для заготовок относительно большой длины с малым углом уклона (рис. 30, в). Заготовку 2 при этом закрепляют только в центрах 1. Учитывая неизбежность износа центровых поверхностей даже при малых углах уклона конуса, обработку ведут резцом 3 в два приема. Сначала обрабатывают конус начерно. Затем производят подправку центровых отверстий. После этого осуществляется чистовое обтачивание. Для уменьшения разработки центровых отверстий в таких случаях успешно применяют центры с вершинами в виде шаровой поверхности. Поперечное смещение задней бабки допускается обычно не более чем на 1/5 часть длины заготовки.

Обтачивание наружных и внутренних конических поверхностей при помощи универсальной копирной линейки применяется при обработке заготовок любой длины с малым углом уклона конуса, примерно до 12° (рис. 30, г). Копирная линейка 1 устанавливается на плите 5 параллельно образующей обтачиваемой конической поверхности, верхняя часть суппорта 4 при этом поворачивается на 90°. Отсчет угла поворота линейки при наладке производится по делениям (миллиметровым или угловым), нанесенным на плите 5. Плита крепится при помощи кронштейнов к станине станка. После поворота линейки вокруг оси на требуемый угол а она закрепляется гайкой 6. В пазу линейки расположена ползушка 7, жестко соединенная с поперечными салазками 2 суппорта. При точении резец вместе с суппортом перемещается в продольном направлении и под действием ползушки, скользящей в прорези линейки,— в поперечном направлении. При этом будет обтачиваться коническая поверхность с углом при вершине 2а. Угол поворота линейки должен быть равен углу уклона конуса. Если шкала линейки имеет миллиметровые деления, то поворот линейки определяется по одной из следующих формул:

где h — число миллиметровых делений шкалы копирной линейки; Н — расстояние от оси вращения линейки до ее торца, на котором нанесена шкала; D — наибольший диаметр конуса; d—наименьший диаметр конуса; tga — угол наклона конуса; К —конусность

(К= (D-d)/l); l — длина конуса.

При а>12° используют так называемый комбинированный метод обработки, при котором угол наклона разбивается на два угла: a1 =11—12°; a2 =a - a1. Копирную линейку устанавливают на угол a1 = 12°; а заднюю бабку смещают для обработки конической поверхности с углом наклона a2=a— 12°.

Способ обработки конических поверхностей при помощи копирной линейки достаточно универсален и обеспечивает высокую точность, а наладка линейки удобна и производится быстро.

Независимо от способа обработки конуса резец устанавливают точно на высоте центров станка.

Обработка конических поверхностей – это технически сложный процесс, который выполняется на токарном оборудовании.

Кроме специального инструмента необходима высокая квалификация (разряд) оператора. Обработка конических поверхностей на токарных станках делится на две категории:

  • работа с наружными конусами;

  • работа с коническими отверстиями.

Каждый вид обработки обладает своими техническими особенностями и нюансами, которые должны учитываться токарем.

Особенности обработки наружного конических поверхностей

В силу своей специфической формы, работа с наружными коническими поверхностями обладает своей спецификой.

При несоответствии инструмента, дины фигуры и ее физических характеристик поверхность детали приобретает волнистую форму, что негативно сказывается на качестве заготовки и ее дальнейшей пригодности в эксплуатации.

Причины возникновения волнистости:

  • длина конуса более 15 мм;

  • большой вылет резца или плохое крепление детали;

  • увеличение длины заготовки с пропорциональным уменьшением ее диаметра (толщины).

Обработка конических поверхностей на токарном станке без эффекта волн производится при соблюдении таких условий:

  • не нужно достигать высокого класса обработки;

  • при закреплении деталей должен быть большой угол наклона конуса относительно стационарного резца;

  • длина конуса не превышает 15 мм;

  • заготовка конической формы изготовлена из твердого сплава.

Способы обработки конических поверхностей выбираются исходя из указанных критериев.

Конические отверстия

Для обработки конических отверстий в сплошном материале существует два этапа:

  • сверление;

  • развертывание;

В первом случае используют сверло с диаметром равным или меньшим на 2-3 мм чем предполагаемое отверстие.

Размерную дельту уменьшают за счет финальной расточки. Сначала выбирается крупное сверло, которым пробивается отверстие, на глубину, меньше заданной. Затем тонкими сверлами производится каскадное сверление отверстия и доведение глубины до заданной.

При использовании нескольких сверл, внутренний конус соответствует заданным размерам и не имеет ступенчатых переходов.

При развертке отверстий используются сверла с тремя видами рабочей поверхности:

  • первичные (обдирочные). Поверхность сверла имеет редкие грубые зубья, расположенные по винтовой спирали. При работе с этим сверлом снимается большой слой материала и формируется профиль отверстия;

  • вторичное. У этого сверла больше канавок и зубьев, что позволяет добиться более четкого профиля отверстия и убрать излишки металла внутри;

  • третье (чистовое). Поверхность этого сверла имеет прямые зубья, которые позволяют сделать «чистую» проходку и убрать ступенчатый эффект после двух предыдущих разверток.

Глубину и диаметр полученных отверстий проверяют при помощи пробок-калибров.

Обработка цилиндрических поверхностей

Обработка цилиндрических поверхностей на токарном станке – это две разные технологии, одна из которых позволяет работать с внешней поверхностью (валы, втулки, диски), а другая – с внутренней (отверстия).

Для работы используются резцы, сверла, развертки.

Использование определенного типа инструмента зависит от диаметра отверстия (толщины вала), класса чистоты обработки и шероховатости поверхности.

Детали с цилиндрической формой широко используются в машиностроении и тяжелой промышленности, а качество отверстий в сплошном материале определяет степень стыковки элементов конструкции, общую механическую прочность узла и длительность эксплуатации изделия.

Обработка наружных цилиндрических поверхностей заключается в доведении заготовки до заданной толщины путем снятия стружки при помощи резца. Для этого деталь располагается параллельно полу и закрепляется на токарном станке.

Проходом резца вдоль поверхности вращения позволяет достигнуть необходимого класса обработки и толщины детали.

Обработка цилиндрических поверхностей наружного типа делается в три этапа:

  • черновая обточка. При таком методе получают шероховатость до 3-го класса и точность поверхности до 5-го;

  • чистовая обработка. Класс точности возрастает до 4-го, а шероховатость до 6-го;

  • чистовая тонкая (сверхточная). Степень шероховатости на уровне 9-го класса, а точность до 2-го.

В зависимости от желаемых показателей мастер использует одну или несколько стадий обработки.

Ввиду того, что при изготовлении многоступенчатых валов из цельной заготовки значительная часть материала становится стружкой, в современном производстве заготовки получают методом литья, а на станке проводится доводка детали до заданных параметров.

Обработка внутренних цилиндрических поверхностей – это достижение заданного класса точности при работе с отверстиями.

По своему типу отверстия делятся на категории:

  • сквозные;

  • глухие (досверленные до определенной глубины);

  • глубокие со ступенчатой структурой (несколько диаметров на разных глубинах).

Исходя из типа отверстия и его габаритных размеров, применяются сверла определенной формы и диаметра.

Для достижения заданного класса точности мастера используют несколько разновидностей инструментов и производят обработку внутренней поверхности в три этапа, так же, как и с внешним цилиндром (черновое сверление, чистовое и высокоточное).

Тип инструмента зависит от твердости материала и заданных технических характеристик отверстия.

Современные технологии обработки конических и цилиндрических поверхностей демонстрируются на ежегодной выставке « ».

1. Широким резцом

При обработке валов часто встречаются переходы между обрабатываемыми поверхностями, имеющие коническую форму, а на торцах обычно снимают фаску. Если длина конуса не превышает 25 мм, то его обработку можно производить широким резцом (рис. 2).

Угол наклона режущей кромки резца в плане должен соответствовать углу уклона конуса на обрабатываемой детали. Резцу сообщают подачу в поперечном или продольном направлении.

Следует учитывать, что при обработке конуса резцом с режущей кромкой длиной более 10-15 мм могут возникнуть вибрации, уровень которых тем выше, чем больше длина обрабатываемой детали, меньше ее диаметр, меньше угол наклона конуса. В результате вибраций на обрабатываемой поверхности появляются следы, и ухудшается ее качество. Это объясняется ограниченностью жесткости системы: станок – приспособление – инструмент – деталь (СПИД). При обработке широким резцом жестких деталей вибрации могут отсутствовать, но при этом возможно смещение резца под действием радиальной составляющей силы резания, что приводит к нарушению настройки резца на требуемый угол уклона.

Достоинства метода:

1. Простота настройки.

2. Независимость угла уклона a от габаритов заготовки.

3. Возможность обработки как наружных, так и внутренних конических поверхностей.

Недостатки метода:

1. Ручная подача.

2. Ограниченность длины образующей конуса длиной режущей кромки резца (10–12 мм). При увеличении длины режущей кромки резца возникают вибрации, приводящие к формированию волнистости поверхности.

2. Поворотом верхних салазок суппорта

Конические поверхности с большими уклонами можно обрабатывать при повороте верхних салазок суппорта с резцедержателем на угол a , равный углу уклона обрабатываемого конуса
(рис. 3).

Поворотная плита суппорта вместе с верхними салазками может поворачиваться относительно поперечных салазок, для этого освобождают гайку винтов крепления плиты. Контроль угла поворота с точностью до одного градуса осуществляется по делениям поворотной плиты. Положение суппорта фиксируют зажимными гайками. Подача производится вручную рукояткой перемещения верхних салазок.

Указанным способом обрабатывают конические поверхности, длина которых соизмерима с длиной хода верхних салазок (до 200 мм).

Достоинства метода:

1. Простота настройки.

2. Независимость угла уклона a от габаритов заготовки.

3. Обработка конуса с любым углом уклона.

4. Возможность обработки как наружных, так и внутренних конических поверхностей.

Недостатки метода:

1. Ограничение длины образующей конуса.

2. Ручная подача.

Примечание: Некоторые токарные станки (16К20, 16А30) имеют механизм передачи вращения на винт верхних салазок суппорта. На таком станке независимо от угла поворота можно получить автоматическую подачу верхних салазок.

3. Смещением корпуса задней бабки станка

Конические поверхности большой длины с
a = 8-10° можно обрабатывать при смещении задней бабки, величина которого определяется следующим образом (рис. 4):

H = L ×sin a ,

где Н – величина смещения задней бабки;

L – расстояние между опорными поверхностями центровых отверстий.

Из тригонометрии известно, что для малых углов синус практически равен тангенсу угла. Например, для угла 7º синус равен 0,120, а тангенс – 0,123. Способом смещения задней бабки обрабатывают заготовки с малым углом уклона, поэтому можно считать, что sin a = tg a . Тогда

H = L ×tg a = L ×(D d )/2l .

Заготовку устанавливают в центрах. Корпус задней бабки при помощи винта смещают в поперечном направлении так, что заготовка становится «на перекос». При включении подачи каретки суппорта резец, перемещаясь параллельно оси шпинделя, будет обтачивать коническую поверхность.

Величину смещения задней бабки определяют по шкале, нанесенной на торце опорной плиты со стороны маховика, и риске на торце корпуса задней бабки. Цена деления на шкале обычно 1 мм. При отсутствии шкалы на опорной плите величину смещения задней бабки отсчитывают по линейке, приставленной к опорной плите. Положение задней бабки для обработки конической поверхности можно определить по готовой детали. Готовую деталь (или образец) устанавливают в центрах станка и заднюю бабку смещают до тех пор, пока образующая конической поверхности не окажется параллельной направлению продольного перемещения суппорта.

Для обеспечения одинаковой конусности партии деталей, обрабатываемых этим способом, необходимо, чтобы размеры заготовок и их центровых отверстий имели незначительные отклонения. Поскольку смещение центров станка вызывает износ центровых отверстий заготовок, рекомендуется обработать конические поверхности предварительно, затем исправить центровые отверстия и после этого произвести окончательную чистовую обработку. Для уменьшения разбивки центровых отверстий целесообразно использовать шариковые центры. Вращение заготовке передается поводковым патроном и хомутиками.

Достоинства метода:

1. Возможность автоматической подачи.

2. Получение заготовок, соизмеримых по длине с габаритами станка.

Недостатки метода:

1. Невозможность обработки внутренних конических поверхностей.

2. Невозможность обработки конусов с большим углом (a ³10º). Допускается смещение задней бабки на ±15мм.

3. Невозможность использования центровых отверстий в качестве базовых поверхностей.

4. Зависимость угла a от габаритов заготовки.

4. С помощью копировальной (конусной) линейки

Распространенной является обработка конических поверхностей с применением копировальных устройств (рис. 5).

К станине станка крепится плита 1, с копировальной линейкой 2, по которой перемещается ползун 4, соединенный с поперечной кареткой верхнего суппорта 5 станка тягой 6. Для свободного перемещения суппорта в поперечном направлении необходимо отсоединить винт поперечной подачи. При перемещении продольного суппорта 8 по направляющим станины 7 резец получает два движения: продольное от суппорта и поперечное от копировальной линейки 2. Величина поперечного перемещения зависит от угла поворота копировальной линейки 2. Угол поворота линейки определяют по делениям на плите 1, фиксируют линейку болтами 3. Подачу резца на глубину резания производят рукояткой перемещения верхних салазок суппорта.

Способ обеспечивает высокопроизводительную и точную обработку наружных и внутренних конусов с углом уклона до 20º.

Достоинства метода:

1. Механическая подача.

2. Независимость угла уклона конуса a от габаритов заготовки.

3. Возможность обработки как наружных, так и внутренних поверхностей.

Недостатки метода:

1. Ограничение длины образующей конуса длиной конусной линейки (на станках средней мощности – до 500 мм).

2. Ограничение угла уклона шкалой копировальной линейки.

Для обработки конусов с большими углами уклона сочетают смещение задней бабки и наладку по конусной линейке. Для этого линейку поворачивают на максимально допустимый угол поворота a ´, а смещение задней бабки рассчитывают как при обточке конуса, у которого угол уклона равен разности между заданным углом a и углом поворота линейки a ´, т.е.

H = L ×tg (a a ´) .


Похожая информация.


Обработку конических поверхностей на токарных станках выполняют различными способами: поворотом верхней части суппорта; смещением корпуса задней бабки; поворотом конусной линейки; широким резцом. Применение того или иного способа зависит от длины конической поверхности и угла уклона конуса.

Обработка наружного конуса способом поворота верхних салазок суппорта целесообразна в тех случаях, когда необходимо получить большой угол уклона конуса при сравнительно небольшой его длине. Наибольшая длина образующей конуса должна быть несколько меньше хода каретки верхнего суппорта. Обработка наружного конуса способом смещения корпуса задней бабки удобна для получения длинных пологих конусов с малым углом уклона (3...5). Для этого корпус задней бабки сдвигают в поперечном направлении от линии центров станка по направляющим основания бабки. Обрабатываемая заготовка закрепляется между центрами станка в поводковом патроне с хомутиком. Обработку конусов с помощью конусной (копировальной) линейки, закрепленной с задней стороны станины токарного станка на плите, применяют для получения пологого конуса значительной длины. Заготовку крепят в центрах или в трехкулачковом самоцентрирующемся патроне. Резец, закрепленный в резцедержателе суппорта станка, получает одновременное перемещение в продольном и поперечном направлениях, в результате чего обрабатывает коническую поверхность заготовки.

Обработку наружного конуса широким резцом применяют при необходимости получения короткого конуса (l<25 мм) с большим углом уклона. Широкий проходной резец, режущая кромка которого длинней образующей конуса, устанавливают в резце держатель так, чтобы главная режущая кромка резца составляла с осью заготовки угол а, равный углу уклона конуса. Обработку можно вести как с продольной, так и с поперечной подачей. На чертежах деталей часто не указывают размеры, необходимые для обработки конус и их необходимо подсчитывать. Для подсчета неизвестных элементов конусов и их размеров (в мм) можно пользоваться следующими формулами

а) конусность K= (D--d)/l=2tg

б) угол уклона конуса tg = (D--d)/(2l) = K/2

в) уклон i = K/2=(D--d)/(2l) = tg

г) больший диаметр конуса D = Кl+d = 2ltg

д) меньший диаметр конуса d = D-- К1 = D--2ltg

е) длина конуса l = (D--d)К = (D--d)/2tg

Обработку внутренних конических поверхностей на токарных станках выполняют также различными способами: широким резцом, поворотом верхней части (салазок) суппорта, поворотом конусной (копировальной) линейки. Внутренние конические поверхности длиной до 15 мм обрабатывают широким резцом, главная режущая кромка которого установлена под требуемым углом к оси конуса, осуществляя продольную или поперечную подачу. Этот способ применяют в том случае, когда угол уклона конуса большой, а к точности угла уклона конуса и шероховатости поверхности не предъявляют высоких требований. Внутренние конусы длинней 15 мм при любом угле наклона обрабатывают поворотом верхних салазок суппорта с применением ручной подачи.

§ 1. Общие сведения
1. Область применения конусов. Наряду с цилиндрическими деталями в машиностроении получили довольно широкое распространение детали с коническими поверхностями. Примерами их могут служить конусы центров, хвостовиков сверл, зенкеров, разверток. Для крепления этих инструментов передние участки отверстий шпинделя и пиноли токарного станка имеют также коническую форму.
Однако область использования конусов не ограничивается режущими инструментами. Конические поверхности имеют многие детали машин.
Широкое использование конических соединений объясняется рядом их преимуществ.
1. Они обеспечивают высокую точность центрирования деталей.
2. При плотном соприкосновении пологих конусов получается неподвижное соединение.
3. Изменяя осевое положение деталей конического соединения, можно регулировать величину зазора между ними.
2. Конус и его элементы. Конус представляет собой геометрическое тело, поверхность которого получается вращением прямой линии (образующей), наклонно расположенной к оси вращения (рис. 129, а).
Точка пересечения образующей с осью называется вершиной конуса.
Плоскости, перпендикулярные к оси конуса, называются, основаниями.
Различают полный и усеченный конусы. Первый расположен между основанием и вершиной, второй - между двумя основаниями (большим и меньшим).
Конус характеризуется следующими элементами: диаметром большего основания D; диаметром меньшего основания d; длиной l; углом уклона а между образующей и осью конуса; углом конуса 2а между противоположными образующими.
Кроме этого, на рабочих чертежах конических деталей часто употребляют понятия конусность и уклон.
Конусностью называется отношение разности диаметров двух перечных сечений конуса к расстоянию между ними. Она опреляется по формуле

Уклоном называется отношение разности радиусов двух поперечных сечений конуса к расстоянию между ними. Его определяют по формуле

Из формул (9) и (10) видно, что уклон равен половине конусности.


Тригонометрически уклон равен тангенсу угла уклона (см. рис. 129, б, треугольник ABC), т. е.

На чертеже (рис. 130) конусность обозначают знаком <, а уклон -, острие которых направляется в сторону вершины конуса. После знака указывается отношение двух цифр. Первая из них соответствует разности диаметров в двух принятых сечениях конуса, вторая для конусности- расстояние между сечениями, для уклона - удвоенной величине этого расстояния.
Конусность и уклон иногда записываются числами десятичной дроби: 6,02; 0,04; 0,1 и т. д. Для конусности эти цифры соответствуют разности диаметров конуса на длине 1 мм, для уклона - разности радиусов на этой же длине.
Для обработки полного конуса достаточно знать два элемента: диаметр основания и длину; для усеченного конуса - три элемента: диаметры большего и меньшего оснований и длину. Вместо одного из указанных элементов может быть задан угол наклона а, уклон или конусность. В этом случае для определения недостающих размеров пользуются вышеприведенными формулами (9), (10) и (11).


Пример 1. Дан конус, у которого d=30 мм, /=500 мм, К=1: 20. Определить больший диаметр конуса.
Решение. Из формулы (9)

Пример 2. Дан конус, у которого D=40 мм, l = 100 мм, а=5 , Определить меньший диаметр конуса.
Решение. Из формулы (11)

По таблице тангенсов находим tg5°=0,087. Следовательно, d=40-2*100Х Х0,87=22,6 мм.
Пример 3. Определить угол уклона а, если на чертеже указаны размеры конуса: D-50 мм, d=30 мм, /=200 мм.
Решение. По формуле (11)

Из таблицы тангенсов находим а=2 50 .
Пример 4. Дан конус, у которого D=60 мм, /=150 мм, К=1: 50. Определить угол уклона а.
Решение. Так как уклон равен половине конусности, можно записать:

По таблице тангенсов находим а=0 30 .
3. Нормальные конусы. Конусы, размеры которых стандартизованы, называются нормальными. К ним относятся конусы Морзе, метрические, конусы для насадных разверток и зенкеров с конусностью 1:50 0, под конические штифты - с конусностью 1:50, для конических резьб с конусностью 1: 16 и др.
Наибольшее распространение в машиностроении получили инструментальные конусы Морзе и метрические, основные размеры которых приведены в табл. 13.

Размеры конусов Морзе выражаются дробными числами. Это объясняется тем, что впервые стандарт на них был принят в дюймовой системе измерения, которая сохранилась до настоящего времени. Конусы Морзе имеют различную конусность (примерно 1 20), метрические конусы одинаковую - 1:20.



Поделиться