Свойства воды — химические и физические свойства воды в жидком состоянии. Сверхкритическое состояние вещества Критическая точка физика

Экспериментальные и теоретические изотермы

Впервые экспериментальные изотермы для реальных газов (углекислый газ ) были изучены Эндрюсом, они были получены медленным изотермическим сжатием ненасыщенного пара, находящегося в цилиндре под поршнем (изотермы приведены на рис. 2.19,а).

Как видно из изотерм, приведенных на рис. 2.19,а, все они содержат горизонтальный участок, который с повышением температуры уменьшается и при достижении критической температуры () полностью исчезает. Критической температуре соответствует критическая изотерма 4, на ней в критической точке имеется точка перегиба.

Если провести через крайние точки горизонтальных участков изотерм линию (она будет колоколообразной), то тогда вся область диаграммы в координатах (,) будет разделена на три области (рис. 2.19,б) - область жидких состояний, область газообразных состояний и область двухфазных состояний (в ней одновременно существуют газообразное и жидкое состояния вещества). Отметим, что на рис. 2.19,б не отражено твердое состояние вещества.

Область газообразных состояний, которая располагается выше критической изотермы, называют газом. Изотермы в этой области напоминают изотермы идеального газа (рис. 2.19,а, изотерма 5). В этой области температур вещество существует только в газообразном состоянии при любых давлениях и объемах, т.е. проводя изотермическое сжатие газа, нельзя его при таких температурах превратить в жидкость. Это объясняет тот факт, что гелий и водород длительное время с помощью процесса изотермического сжатия не удавалось перевести в жидкое состояние (для гелия и водорода критические температуры составляли и соответственно). Если взять газ, находящийся ниже критической изотермы, то при изотермическом сжатии его можно превратить в жидкость. Поэтому, отмечая этот факт, в этой области газ называют ненасыщенным паром.

Рассмотрим подробнее изотерму под номером 2 на рис. 2.19,а. Ее можно разделить на три участка.

Участок - . При сжатии ненасыщенного пара он переходит в насыщенное состояние в точке .

Участок - . Происходит конденсация насыщенного пара, при неизменном давлении, равном давлению насыщенного пара при данной температуре. В этой области объемов две фазы вещества – жидкая и парообразная – находятся в равновесии. При достижении точки весь пар превращается в жидкость.

Участок - . Здесь наблюдается жидкое состояние вещества. Изменение объема жидкости при увеличении ее давления будет незначительным. Поэтому изотермы в этой области практически вертикальны.

Рассмотрим подробнее, что происходит в критической точке (параметры, соответствующие ей, обозначаются как , и ).



В критической точке наблюдается критическое состояние вещества , для него исчезает различие между жидкостью и насыщенным паром. Это проявляется в том, что при нагреве в закрытом сосуде какой-то жидкости при достижении критической температуры исчезнет граница раздела между жидкостью и паром - они образуют единое однородное вещество (плотности пара и жидкости совпадут, силы поверхностного натяжения исчезнут, теплота парообразования будет равна нулю).

3. Сравнение теоретических и экспериментальных изотерм . Рассмотрим вид расчетных изотерм, которые можно получить из уравнения (2.86). Для этого перепишем это уравнение в следующем виде:

. (2.88)

Известно, что такое кубическое уравнение имеет либо один, либо три вещественных корня. На рис. 2.19,в приведен график одной из расчетных изотерм - для нее в области давлений () решение уравнения (2.88) дает три вещественных корня (горизонтальная линия пересекает изотерму в трех точках, соответствующих значениям объема , и ). Это приводит к зигзагообразному (волнообразному) поведению изотермы в области одновременного существования насыщенного пара и жидкости.

Такое поведение изотермы в этой области не согласуется с экспериментом. В других же областях, где существует только жидкость или только пар, наблюдается достаточно удовлетворительное согласие между экспериментом и теорией.

Отметим, что волнообразные участки расчетных изотерм частично подтверждаются экспериментом. Если создать условия, при которых в газе будут отсутствовать центры конденсации (например, пылинки или ионы), то медленным изотермическим сжатием (переход 1-2-3) можно получить так называемый пересыщенный пар , ему соответствуют на изотерме состояния, заключенные между точками 2 и 3 (рис. 2.20,а). Давление пересыщенного пара превышает давление насыщенного пара при этой температуре. Эти состояния будут метастабильными (малоустойчивыми) – при возникновении центров конденсации пересыщенный пар быстро превращается в жидкость (переход 3-4), возникает равновесное состояние между насыщенным паром и жидкостью.

Аналогично можно получить метастабильные состояния перегретой жидкости . Для этого необходимо удалить из жидкости и стенок сосуда, в которой она находится, центры парообразования (например, пылинки, пузырьки растворенных в жидкости газов). Перегретой жидкости соответствуют состояния, расположенные на изотерме между точками 6 и 7, (рис. 2.20,а), ее температура будет выше температуры точки кипения. Если в жидкости возникают центры парообразования, то она мгновенно закипает (переход 7-8).

Состояния, соответствующие части изотермы между точками 3 и 7 (они обозначены пунктирной линией), абсолютно неустойчивы (рис. 2.20,а) и не реализуются на практике.

Для примера, на рис. 2.20,б приведены графики расчетных изотерм при различных температурах. При их построении необходимо учитывать, что площади фигур и должны быть одинаковы (рис. 2.20,в), это является следствием второго начала термодинамики.

4. Критические параметры вещества . Рассмотрим, как с помощью экспериментально определенных критических параметров вещества (), соответствующих критической точке, можно оценить постоянные и , входящие в уравнение Ван-дер-Ваальса.

Критической точке на критической изотерме соответствует точка перегиба, причем в этой точке касательная к графику будет горизонтальна. Это означает, что в этой точке равны нулю первая и вторая производные давления газа по объему. Найдем эти производные. Для этого перепишем уравнение (12.99) в следующем виде:

, .

Как превратить газ в жидкость? График кипения отвечает на этот вопрос. Превратить газ в жидкость можно, либо уменьшая температуру, либо увеличивая давление.

В XIX веке повышение давления представлялось задачей более легкой, чем понижение температуры. В начале этого столетия великому английскому физику Михаилу Фараде удалось сжать газы до значений упругости паров и таким способом превратить в жидкость много газов (хлор, углекислый газ и др.).

Однако некоторые газы - водород, азот, кислород - никак не поддавались сжижению. Сколько ни увеличивали давление, они не превращались в жидкость. Можно было подумать, что кислород и другие газы не могут быть жидкими. Их причислили к истинным, или постоянным, газам.

На самом же деле неудачи были вызваны непониманием одного важного обстоятельства.

Рассмотрим жидкость и пар, находящиеся в равновесии, и подумаем, что происходит с ними при возрастании температуры кипения и, разумеется, соответствующем возрастании давления. Иначе говоря, представим себе, что точка на графике кипения движется вдоль кривой вверх. Ясно, что жидкость при повышении температуры расширяется и плотность ее падает. Что же касается пара, то увеличение температуры кипения? разумеется, способствует его расширению, но, как мы уже говорили, давление насыщенного пара растет значительно быстрее, чем температура кипения. Поэтому плотность пара не падает, а, наоборот, быстро растет с увеличением температуры кипения.

Поскольку плотность жидкости падает, а плотность пара растет, то, двигаясь "вверх" по кривой кипения, мы неминуемо доберемся до такой точки, в которой плотности жидкости и пара сравняются (рис. 4.3).

В этой замечательной точке,- которая называется критической, кривая кипения обрывается. Так как все различия между газом и жидкостью связаны с разницей в плотности, то в критической точке свойства жидкости и газа становятся одинаковыми. Для каждого вещества существует своя критическая температура и свое критическое давление. Так, для воды критическая точка соответствует температуре 374°С и давлению 218,5 атм.

Если сжимать газ, температура которого ниже критической, то процесс его сжатия изобразится стрелкой, пересекающей кривую кипения (рис. 4.4). Это значит, что в момент достижения давления, равного упругости пара (точка пересечения стрелки с кривой кипения), газ начнет конденсироваться в жидкость. Если бы наш сосуд был прозрачным, то в этот момент мы увидели бы начало образования слоя жидкости на дне сосуда. При неизменном давлении слой жидкости будет расти, пока, наконец, весь газ не превратится в жидкость. Дальнейшее сжатие потребует уже увеличения давления.


Совершенно иначе обстоит дело при сжатии газа, температура которого выше критической. Процесс сжатия опять-таки можно изобразить в виде стрелки, идущей снизу вверх. Но теперь эта стрелка не пересекает кривую кипения. Значит, при сжатии пар не будет конденсироваться, а будет лишь непрерывно уплотняться.

При температуре выше критической невозможно существование жидкости и газа, поделенных границей раздела: При сжатии до любых плотностей под поршнем будет находиться однородное вещество, и трудно сказать, когда его можно назвать газом, а когда - жидкостью.

Наличие критической точки показывает, что между жидким и газообразным состоянием нет принципиального различия. На первый взгляд могло бы показаться, что такого принципиального различия нет только в том случае, когда речь идет о температурах выше критической. Это, однако, не так. Существование- критической точки указывает на возможность превращения жидкости - самой настоящей жидкости, которую можно налить в стакан - в газообразное состояние без всякого подобия кипения.

Такой путь превращения показан на рис. 4.4. Крестиком отмечена заведомая жидкость. Если немного понизить давление (стрелка вниз), она закипит, закипит она и в том случае, если немного повысить температуру (стрелка вправо). Но мы поступим совсем иначе, Сожмем жидкость весьма сильно, до давления выше критического. Точка, изображающая состояние жидкости, пойдет вертикально вверх. Затем подогреем жидкость - этот процесс изобразится горизонтальной линией. Теперь, после того как мы очутились правее Критической температуры, понизим давление до исходного. Если теперь уменьшить температуру, то можно получить самый настоящий пар, который мог быть получен из этой жидкости более простым и коротким путем.

Таким образом, всегда возможно, изменяя давление и температуру в обход критической точки, получить пар путем непрерывного перехода его из жидкости или жидкость из пара. Такой непрерывный переход не требует кипения или конденсации.

Ранние попытки сжижения таких газов, как кислород, азот, водород, потому и были неудачны, что не было известно о существовании критической температуры. У этих газов критические температуры очень низкие: у азота -147°С, у кислорода -119°С, у водорода -240°С, или 33 К. Рекордсменом является гелий, его критическая температура равна 4,3 К. Превратить эти газы в жидкость можно лишь одним" способом - надо снизить их температуру ниже указанной"

Жидкость, например вода, может находиться в твердом, жидком и газообразном состоянии, которые называют фазовыми состояниями вещества . В жидкостях расстояния между молекулами примерно на два порядка меньше, чем в газах. В твердом веществе молекулы расположены еще ближе друг к другу. Температура, при которой меняется фазовое состояние вещества (жидкое – твердое, жидкое – газообразное), называется температурой фазового перехода .

Теплотой фазового перехода или скрытой теплотой называется величина теплоты плавления или испарения вещества. На рис.6.9 представлена зависимость температуры воды от количества получаемого тепла в калориях. Видно, что при температурах 0 0 С и 100 0 С происходит изменение фазового состояния воды, а температура воды при этом не изменяется. Поглощенное тепло расходуется на изменение фазового состояния вещества. Физически это означает, что при нагревании твердого тела, например, льда при 0 0 С происходит увеличение амплитуды колебаний молекул друг относительно друга. Это приводит к возрастанию их потенциальной энергии, и, следовательно, к ослаблению или разрыву межмолекулярных связей. Молекулы или их скопления получают возможность перемещаться друг относительно друга. Лед превращается при неменяющейся температуре в жидкость. После изменения его агрегатного состояния из твердого в жидкое, поглощение теплоты приводит к возрастанию температуры по линейному закону. Так происходит до 100 0 С. Затем энергия колеблющихся молекул возрастает настолько, что молекулы способны преодолеть притяжение остальных молекул. Они бурно отрываются не только от поверхности воды, но и образуют пузыри из пара по всему объему жидкости. Они поднимаются к поверхности под действием выталкивающей силы и выбрасываются наружу. В этом фазовом переходе вода превращается в пар. Далее опять поглощение теплоты приводит к возрастанию температуры пара по линейному закону.

Теплота, выделяющаяся или поглощающаяся при фазовом переходе, зависит от массы вещества.

При переходе вещества массы m из жидкого в газообразное состояние или, наоборот, из газообразного в жидкое поглощается или выделяется теплота Q:

Удельной теплотой парообразованияr Q , необходимое для превращения в пар 1 кг жидкости при температуре кипения:

При переходе вещества из твердого состояния в жидкое и обратно поглощается или передается количество теплоты:

Удельной теплотой плавления q называется количество теплоты Q , необходимое для превращения 1 кг твердого вещества (например, льда) в жидкость при температуре плавления:

Удельная теплота плавления и парообразования измеряется в Дж/кг. С ростом температуры удельная теплота парообразования уменьшается, а при критической температуре становится равной нулю.



Для воды удельная теплота плавления и парообразования соответственно составляют:

, .

Здесь используется внесистемная единица измерения количества энергии – калория, равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 °C при нормальном атмосферном давлении 101.325 кПа.

Как видно на рис.6.17 для нагревания льда от -20 0 С до 0 0 С необходимо в восемь раз меньше энергии, чем для превращения ее из льда в воду, и в 54 раза меньше, чем превратить воду в пар.

Рис.6.17. Зависимость температуры от подводимой к системе теплоты

для 1 кг льда.

Температура, при которой теряется различие между паром и жидкостью, называется критической . На рис. 6.18 иллюстрируется понятие критической температуры на зависимости плотности воды и пара от температуры. При нагревании воды в закрытой пробирке, как видно на рис.6.18, плотность воды с ростом температуры уменьшается из-за объемного расширения воды, а плотность пара возрастает. При некоторой температуре, которая и называется критической, плотность пара становится равной плотности воды.

У каждого вещества своя критическая температура. Для воды, азота и гелия критические температуры соответственно составляют:

, , .

Рис.6.18. Критическая точка на графике зависимости

плотности пара и воды от температуры.

Рис.6.19. Зависимость давления от объема p=p(V) для пара. В области, выделенной пунктиром, газообразное и жидкое состояния вещества существуют одновременно.

На рис.6.19 представлена зависимость давления пара от его объема Р=Р(V). Уравнение состояния пара при низком давлении и вдали от температуры его фазового перехода (выше точки b 0 на рис.6.19) близко к уравнению состояния идеального газа (то есть в этом случае газ можно считать идеальным и его поведение хорошо описывается законом Бойля - Мориотта). С уменьшением температуры зависимость Р=Р(V) начинает отличаться от ее вида для идеального газа. На участке а – b происходит конденсация пара и давление пара почти не меняется, а зависимость на рис.6.19 представляет собой медленно спадающую линейную функцию. Ниже точки а, весь пар становится жидкостью, и далее происходит уже сжатие жидкости.В этом случае, как видно на рис.6.11, давление при очень незначительном уменьшении объема, поскольку жидкость практически несжимаема, резко возрастает.

Поскольку температура фазового перехода зависит от давления газа, можно представить фазовые переходы, используя зависимость давления от температуры Р=Р(Т) на рис.6.20. Изменение фазового состояния вещества происходит на границе пар - жидкость, твердое тело - жидкость, твердое тело - пар. С разных сторон этих граничных линий газ находится в разном агрегатном состоянии – твердом, жидком или газообразном.

Рис.6.20. Фазовая диаграмма для воды.

Точка пересечения трех линий на рис.6.12 называется тройной точкой . Например, вода при температуре 0 0 С и давлении атм., имеет тройную точку, а углекислый газ имеет тройную точку при температуре и давлении P=5,1 атм. На рис.6.20 видно, что возможен переход вещества из газообразного в твердое состояние и наоборот, минуя жидкую стадию.

Переход из твердого состояния вещества в газообразное состояние называют сублимацией.

Пример: охлаждение сухим льдом, например, пачек мороженного, находящихся на лотках. В этом случае, как мы неоднократно видели, сухой лед превращается в пар.

Уравнение состояния Термодинамические величины Термодинамические потенциалы Термодинамические циклы Фазовые переходы См. также «Физический портал»

Критическая температура фазового перехода - значение температуры в критической точке. При температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении .

Физическое значение

В критической точке плотность жидкости и её насыщенного пара становятся равны, а поверхностное натяжение жидкости падает до нуля, поэтому исчезает граница раздела фаз жидкость-пар.

Для смеси веществ критическая температура не является постоянной величиной и может быть представлена пространственной кривой (зависящей от пропорции составляющих компонентов), крайними точками которой являются критические температуры чистых веществ - компонентов рассматриваемой смеси.

Критической точке на диаграмме состояния вещества соответствуют предельные точки на кривых равновесия фаз, в окрестностях точки фазовое равновесие нарушается, происходит потеря термодинамической устойчивости по плотности вещества. По одну сторону от критической точки вещество однородно (обычно при texvc не найден; См. math/README - справку по настройке.): T > T_{crit} ), а по другую - разделяется на жидкость и пар.

В окрестностях точки наблюдаются критические явления: из-за роста характеристических размеров флуктуаций плотности резко усиливается рассеяние света при прохождении через вещество - при достижении размеров флуктуаций порядков сотен нанометров , т. е. длин волн света, вещество становится непрозрачным - наблюдается его критическая опалесценция . Рост флуктуаций приводит также к усилению поглощения звука и росту его дисперсии , изменению характера броуновского движения , аномалиям вязкости , теплопроводности , замедлению установления теплового равновесия и т. п.

История

Впервые явление критического состояния вещества было обнаружено в 1822 году Шарлем Каньяром де Ла-Туром , а в 1860 году повторно открыто Д.И.Менделеевым . Систематические исследования начались с работ Томаса Эндрюса . Практически явление критической точки можно наблюдать при нагревании жидкости, частично заполняющей запаянную трубку. По мере нагрева мениск постепенно теряет свою кривизну, становясь всё более плоским, а при достижении критической температуры перестает быть различимым.

Параметры критических точек некоторых веществ
Вещество Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): T_{crit} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): P_{crit} Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): V_{crit}
Единицы Кельвины Атмосферы см³/моль
Водород 33,0 12,8 61,8
Кислород 154,8 50,1 74,4
1750 1500 44
Этанол 516,3 63,0 167
Диоксид углерода 304,2 72,9 94,0
Вода 647 218,3 56
Азот 126.25 33,5
Аргон 150.86 48,1
Бром 588 102
Гелий 5.19 2,24
Йод 819 116
Криптон 209.45 54,3
Ксенон 289.73 58
Мышьяк 1673
Неон 44.4 27,2
Радон 378
Селен 1766
Сера 1314
Фосфор 994
Фтор 144.3 51,5
Хлор 416.95 76

Критические точки существуют не только для чистых веществ, но и, в некоторых случаях, для их смесей и определяют параметры потери устойчивости смеси (с разделом фаз) - раствор (одна фаза). Примером такой смеси может служить смесь фенол-вода .

Моноизотопный газ при критической температуре неограниченно сжимается до перекрытия электронных оболочек соседних атомов без роста давления.

Напишите отзыв о статье "Критическая точка (термодинамика)"

Отрывок, характеризующий Критическая точка (термодинамика)

– Только лишь то, что они, и правда, глубоко чтили Иоанна, несмотря на то, что никогда не встречали его. – Север улыбнулся. – Ну и ещё то, что, после смерти Радомира и Магдалины, у Катар действительно остались настоящие «Откровения» Христа и дневники Иоанна, которые во что бы то ни стало пыталась найти и уничтожить Римская церковь. Слуги Папы вовсю старались доискаться, где же проклятые Катары прятали своё опаснейшее сокровище?!. Ибо, появись всё это открыто – и история католической церкви потерпела бы полное поражение. Но, как бы ни старались церковные ищейки, счастье так и не улыбнулось им... Ничего так и не удалось найти, кроме как нескольких рукописей очевидцев.
Вот почему единственной возможностью для церкви как-то спасти свою репутацию в случае с Катарами и было лишь извратить их веру и учение так сильно, чтобы уже никто на свете не мог отличить правду от лжи… Как они легко это сделали с жизнью Радомира и Магдалины.
Ещё церковь утверждала, что Катары поклонялись Иоанну даже более, чем самому Иисусу Радомиру. Только вот под Иоанном они подразумевали «своего» Иоанна, с его фальшивыми христианскими евангелиями и такими же фальшивыми рукописями... Настоящего же Иоанна Катары, и правда, чтили, но он, как ты знаешь, не имел ничего общего с церковным Иоанном-«крестителем».
– Ты знаешь, Север, у меня складывается впечатление, что церковь переврала и уничтожила ВСЮ мировую историю. Зачем это было нужно?
– Чтобы не разрешить человеку мыслить, Изидора. Чтобы сделать из людей послушных и ничтожных рабов, которых по своему усмотрению «прощали» или наказывали «святейшие». Ибо, если человек узнал бы правду о своём прошлом, он был бы человеком ГОРДЫМ за себя и своих Предков и никогда не надел бы рабский ошейник. Без ПРАВДЫ же из свободных и сильных люди становились «рабами божьими», и уже не пытались вспомнить, кто они есть на самом деле. Таково настоящее, Изидора... И, честно говоря, оно не оставляет слишком светлых надежд на изменение.
Север был очень тихим и печальным. Видимо, наблюдая людскую слабость и жестокость столько столетий, и видя, как гибнут сильнейшие, его сердце было отравлено горечью и неверием в скорую победу Знания и Света... А мне так хотелось крикнуть ему, что я всё же верю, что люди скоро проснутся!.. Несмотря на злобу и боль, несмотря на предательства и слабость, я верю, что Земля, наконец, не выдержит того, что творят с её детьми. И очнётся... Но я понимала, что не смогу убедить его, так как сама должна буду скоро погибнуть, борясь за это же самое пробуждение.
Но я не жалела... Моя жизнь была всего лишь песчинкой в бескрайнем море страданий. И я должна была лишь бороться до конца, каким бы страшным он ни был. Так как даже капли воды, падая постоянно, в силах продолбить когда-нибудь самый крепкий камень. Так и ЗЛО: если бы люди дробили его даже по крупинке, оно когда-нибудь рухнуло бы, пусть даже не при этой их жизни. Но они вернулись бы снова на свою Землю и увидели бы – это ведь ОНИ помогли ей выстоять!.. Это ОНИ помогли ей стать Светлой и Верной. Знаю, Север сказал бы, что человек ещё не умеет жить для будущего... И знаю – пока это было правдой. Но именно это по моему пониманию и останавливало многих от собственных решений. Так как люди слишком привыкли думать и действовать, «как все», не выделяясь и не встревая, только бы жить спокойно.
– Прости, что заставил тебя пережить столько боли, мой друг. – Прервал мои мысли голос Севера. – Но думаю, это поможет тебе легче встретить свою судьбу. Поможет выстоять...
Мне не хотелось об этом думать... Ещё хотя бы чуточку!.. Ведь на мою печальную судьбу у меня оставалось ещё достаточно предостаточно времени. Поэтому, чтобы поменять наболевшую тему, я опять начала задавать вопросы.

Сверхкритическое состояние – четвертая форма агрегатного состояния, в которое способны переходить многие органические и неорганические вещества.

Впервые сверхкритическое состояние вещества обнаружил Каньяр де ла Тур в 1822 году. Настоящий интерес к новому явлению возник 1869 году после экспериментов Т.Эндрюса. Проводя опыты в толстостенных стеклянных трубках, учёный исследовал свойства CO 2 , легко сжижающегося при повышении давления. В результате он установил, что при 31° С и 7,2 МПа , мениск – граница, разделяющая жидкость и находящийся в равновесии с ней пар, исчезает, при этом система становится гомогенной (однородной) и весь объем приобретает вид молочно-белой опалесцирующей жидкости. При дальнейшем повышении температуры она быстро становится прозрачной и подвижной, состоящей из постоянно перетекающих струй, напоминающих потоки теплого воздуха над нагретой поверхностью. Дальнейшее повышение температуры и давления не приводило к видимым изменениям.

Точку, в которой происходит такой переход, он назвал критической, а состояние вещества, находящегося выше этой точки – сверхкритическим. Несмотря на то, что внешне это состояние напоминает жидкость, в применении к нему сейчас используется специальный термин – сверхкритический флюид (от английского слова fluid , то есть «способный течь»). В современной литературе принято сокращенное обозначение сверхкритических флюидов – СКФ.

Расположение линий, разграничивающих области газообразного, жидкого и твердого состояний, а также положение тройной точки, где сходятся все три области, для каждого вещества индивидуальны. Сверхкритическая область начинается в критической точке (обозначена звездочкой), которая характеризуется непременно двумя параметрами – температурой (Т кр .) и давлением (Р кр .). Понижение либо температуры, либо давления ниже критических значений выводит вещество из сверхкритического состояния.

Факт существования критической точки позволил понять, почему некоторые газы, например, водород, азот и кислород долгое время не удавалось получить в жидком виде при повышении давления, из-за чего их называли перманентными газами (от латинского permanentis – «постоянный»). На приведённой выше диаграмме видно, что область существования жидкой фазы расположена слева от линии критической температуры. Таким образом, для сжижения какого-либо газа его необходимо сначала охладить до температуры ниже критической. У СО 2 критическая температура выше комнатной, поэтому его можно сжижать при указанных условиях, повышая давление. У азота критическая температура намного ниже: –146,95° С, поэтому, если сжимать азот, находящийся при нормальных условиях, можно достичь в конечном итоге сверхкритической области, но жидкий азот при этом образоваться не может. Необходимо сначала охладить азот ниже критической температуры и затем, повышая давление, достичь области, где возможно существование жидкости. Аналогичная ситуация для водорода, кислорода, поэтому перед сжижением их охлаждают до температуры ниже критической, и лишь затем повышают давление. Сверхкритическое состояниевозможно для большинства веществ, нужно лишь, чтобы вещество не разлагалось при критической температуре. В сравнении с указанными веществами критическая точка воды достигается с большим трудом: t кр = 374,2° С и Р кр = 21,4 МПа .

Критическая точка признается как важный физический параметр вещества, такой же, как температуры плавления или кипения. Плотность СКФ исключительно низкая, например, вода в состоянии СКФ имеет плотность в три раза ниже, чем при обычных условиях. Все СКФ имеют крайне низкую вязкость.

Сверхкритические флюиды представляют собой нечто среднее между жидкостью и газом. Они могут сжиматься как газы (обычные жидкости практически несжимаемы) и, в тоже время, способны растворять многие вещества в твёрдом и жидком состояниях, что газам несвойственно. Сверхкритический этанол (при температуре выше 234° С) очень легко растворяет некоторые неорганические соли (CoCl 2 , KBr , KI ). Диоксид углерода, закись азота, этилен и некоторые другие газы в состоянии СКФ приобретают способность растворять многие органические вещества – стеариновую кислоту, парафин, нафталин. Свойства сверхкритического СО 2 как растворителя можно регулировать – при повышении давления его растворяющая способность резко увеличивается.

Сверхкритические флюиды стали широко использовать только в 1980-х, когда общий уровень развития промышленности сделал установки для получения СКФ широко доступными. С этого момента началось интенсивное развитие сверхкритических технологий. СКФ – это не только хорошие растворители, но и вещества с высоким коэффициентом диффузии, т.е. они легко проникают в глубинные слои различных твердых веществ и материалов. Наиболее широкое применение нашёл сверхкритический СО 2 , который оказался растворителем широкого круга органических соединений. Диоксид углерода стал лидером в мире сверхкритических технологий, т.к. обладает целым комплексом преимуществ. Перевести его в сверхкритическое состояние достаточно легко (t кр – 31° С, Р кр – 73,8 атм. ), кроме того, он не токсичен, не горюч, не взрывоопасен, к тому же, дешев и доступен. С точки зрения любого технолога он является идеальным компонентом любого процесса. Особую привлекательность ему придает то, что он является составной частью атмосферного воздуха и, следовательно, не загрязняет окружающую среду. Сверхкритический СО 2 можно считать экологически абсолютно чистым растворителем. Приведём только некоторые примеры его использования.

Кофеин – препарат, используемый для улучшения деятельности сердечно-сосудистой системы, получают из кофейных зерен даже без их предварительного измельчения. Полнота извлечения достигается за счет высокой проникающей способности СКФ. Зерна помещают в автоклав – ёмкость, выдерживающую повышенное давление, затем подают в неё газообразный СО 2 , далее создают необходимое давление (>73 атм. ), в результате СО 2 переходит в сверхкритическое состояние. Всё содержимое перемешивают, после чего флюид вместе с растворенным кофеином сливают в открытую емкость. Диоксид углерода, оказавшись в условиях атмосферного давления, превращается в газ и улетает в атмосферу, а экстрагированный кофеин остается в открытой емкости в чистом виде.

Применение СКФ оказалось весьма успешным для очистки от загрязнений электронных схем в процессе их производства, так как на них не остается никаких следов очищающего растворителя.


В связи с быстрыми темпами выработки активной части запасов легкой нефти резко возрос интерес к методам увеличения нефтеотдачи пластов. Если в 70–80 годы XX века число проектов, направленных на решение проблемы увеличения нефтеотдачи посредством нагнетания смешивающихся углеводородных растворителей, «инертных» газов и диоксида углерода было сопоставимо, то в конце XX и начале XXI столетий только метод нагнетания СО 2 имел устойчивую тенденцию роста. Эффективность применения СО 2 для повышения нефтеотдачи доказана не только экспериментальными и теоретическими работами, но и результатами многочисленных промышленных испытаний.

Не стоит забывать, что технология увеличения нефтеотдачи пластов с использованием СО 2 позволяет параллельно решать проблему консервации огромного количества выделяемого промышленностью углекислого газа.

Особенности процесса воздействия нагнетаемого CO 2 на нефтегазовую залежь зависят от его агрегатного состояния.

Превышение давления и температуры выше критических значений для углекислого газа (а это наиболее вероятная ситуация в пластовых условиях), предопределяет его сверхкритическое состояние. В этом случае CO 2 , обладающий исключительной растворяющей способностью по отношению к углеводородным жидкостям при прямом растворении в пластовой нефти, снижает её вязкость и резко улучшает фильтрационные свойства. Указанное обстоятельство даёт все основания отнести СКФ – технологии повышения нефтеотдачи пластов к одним из наиболее перспективных.

ГЛАВА IV.
ТЕРМОДИНАМИКА РАСТВОРОВ (РАСТВОРЫ)



Поделиться