Классификация нагрузок. Постоянные и временные нагрузки и их виды

При методике предельных состояний все нагрузки классифицированы в зависимости от вероятности их воздействия на нормативные и расчетные.

По признаку воздействия нагрузки разделяются на постоянные и временные. Последние могут быть длительного и кратковременного воздействия.

Кроме того, есть нагрузки, которые выделяются в разряд особых нагрузок и воздействий.

Постоянные нагрузки – собственный вес несущих и ограждающих конструкций, давление грунта, предварительное напряжение.

Временные длительные нагрузки – вес стационарного технологического оборудования, вес складируемых материалов в хранилищах, давление газов, жидкостей и сыпучих материалов в емкостях и т.д.

Кратковременные нагрузки – нормативные нагрузки от снега, ветра, подвижного подъемно-транспортного оборудования, массы людей, животных и т.п.

Особые нагрузки – сейсмические воздействия, взрывные воздействия. Нагрузки, возникающие в процессе монтажа конструкций. Нагрузки, связанные с поломкой технологического оборудования, воздействия, связанные с деформациями основания в связи с изменениями структуры грунта (просадочные грунты, осадка грунтов в карстовых районах и над подземными выработками).

Существует иногда термин “полезная нагрузка”. Полезной называют нагрузки, восприятие которых составляет цельное назначение сооружений, например, вес людей для пешеходного моста. Они бывают как временными, так и постоянным, например, вес монументального выставочного сооружения является постоянной нагрузкой для постамента. Для фундамента вес всех вышележащих конструкций также представляет полезную нагрузку.

При действии на конструкцию нескольких видов нагрузок усилия в ней определяются как при самых неблагоприятных сочетаниях с использованием коэффициентов сочетаний .

В СНиПе 2.01.07-85 “ Нагрузки и воздействия” различают:

основные сочетания , состоящие из постоянных и временных нагрузок;

особые сочетания , состоящие из постоянных, временных и одной из особых нагрузок.

При основном сочетании, включающем одну временную нагрузку, коэффициент сочетаний . При большем числе временных нагрузок, последние умножаются на коэффициент сочетаний .

В особых сочетаниях временные нагрузки учитываются с коэффициентом сочетаний , а особая нагрузка - с коэффициентом . Во всех видах сочетаний постоянная нагрузка имеет коэффициент .

нагруженных элементов

Учет сложного напряженного состояния при расчете металлических конструкций производится через расчетное сопротивление , которое устанавливается на основе испытаний металлических образцов при одноосном нагружении. Однако в реальных конструкциях материал, как правило, находится в сложном многокомпонентном напряженном состоянии. В связи с этим необходимо установить правило эквивалентности сложного напряженного состояния одноосному.

В качестве критерия эквивалентности принято использовать потенциальную энергию, накапливаемую в материале при его деформировании внешним воздействиям.

Для удобства анализа энергию деформации можно представить в виде суммы работ по изменению объема А о и изменения формы тела А ф. Первая не превышает 13% полной работы при упругом деформировании и зависит от среднего нормального напряжения.

1 - 2υ

A o = ----------(Ơ Χ + Ơ У + Ơ Ζ) 2 (2.3.)

Вторая работа связана со сдвигами в материале:

А ф = -------[(Ơ Χ 2 +Ơ Υ 2 + Ơ z 2 -(Ơ x Ơ y +Ơ y Ơ z +Ơ z Ơ x) + 3 (τ xy 2 +τ yz 2 + τ zx 2)] (2.4.)

Известно, что разрушение кристаллической структуры строительных сталей и алюминиевых сплавов связано со сдвиговыми явлениями в материале (движение дислокаций и пр.).

Работа формоизменения (2.4.) является инвариантом, поэтому при одноосном напряженном состоянии Ơ = Ơ имеем А 1 =[(1 + ) / 3Е ] Ơ 2

Приравнивая это значение выражению (2.4) и извлекая квадратный корень, получим:

Ơ пр = =Ơ (2.5)

Это соотношение устанавливает энергетическую эквивалентность сложного напряженного состояния одноосному. Выражение в правой части иногда называют приведенным напряжением Ơ пр, имея в виду приведение к некоторому состоянию с одноосным напряжением Ơ .

Если предельно допустимое напряжение в металле (расчетное сопротивление) устанавливается по пределу текучести стандартного образца Ơ T , то выражение (2.5) принимает вид Ơ пр = Ơ T и представляет собой условие пластичности при сложном напряженном состоянии, т.е. условие перехода материала из упругого состояния в пластичное.

В стенках двутавровых балок вблизи приложения поперечной нагрузки

Ơ x 0 . Ơ y 0 . τ xy 0 . остальными компонентами напряжений можно пренебречь. Тогда условие пластичности принимает вид

Ơ пр = = Ơ T (2.6)

В точках, удаленных от места приложения нагрузки, можно пренебречь также локальным напряжением Ơ y = 0 , тогда условие пластичности еще более упростится: Ơ пр = = Ơ T .

При простом сдвиге из всех компонентов напряжений только

τ xy 0 . тогда Ơ пр = = Ơ T . Отсюда

τ xy = Ơ T / = 0,58 Ơ T (2.7)

В соответствии с этим выражением в СНиПе принято соотношение между расчетными сопротивлениями на сдвиг и растяжение ,

где - расчетное сопротивление сдвигу; - предел текучести.

Поведение под нагрузкой центрально растянутого элемента и центрально сжатого при условии обеспечения его устойчивости полностью соответствует работе материала при простом растяжении-сжатии (рис.1.1, б ).

Предполагается, что напряжения в поперечном сечении этих элементов распределяются равномерно. Для обеспечения несущей способности таких элементов необходимо, чтобы напряжения от расчетных нагрузок в сечении с наименьшей площадью не превышали расчетного сопротивления.

Тогда неравенство первого предельного состояния (2.2) будет

где - продольная сила в элементах; - площадь нетто поперечного сечения элемента; - расчетное сопротивление, принимаемое равным , если в элементе не допускается развитие пластических деформаций; если же пластические деформации допустимы, то равняется наибольшему из двух значений и (здесь и - расчетные сопротивления материала по пределу текучести и по временному сопротивлению соответственно); - коэффициент надежности по материалу при расчете конструкции по временному сопротивлению; - коэффициент условий работы.

Проверка по второму предельному состоянию сводится к ограничению удлинения (укорочения) стержня от нормативных нагрузок

N n l / (E A) ∆ (2.9)

где - продольная сила в стержне от нормативных нагрузок; - расчетная длина стержня, равная расстоянию меду точками приложения нагрузки к стержню; - модуль упругости; - площадь брутто поперечного сечения стержня; - предельная величина удлинения (укорочения).

Внешние силы в сопромате делятся на активные и реактивные (реакции связей).Нагрузки – это активные внешние силы.

Нагрузки по способу приложения

По способу приложения нагрузки бывают объемными (собственный вес, силы инерции), действующими на каждый бесконечно малый элемент объема, и поверхностными. Поверхностные нагрузки делятся на сосредоточенные нагрузки ираспределенные нагрузки .

Распределенные нагрузки характеризуются давлением - отношением силы, действующей на элемент поверхности по нормали к ней, к площади данного элемента и выражаются в Международной системе единиц (СИ) в паскалях, мегапаскалях (1 ПА = 1 Н/м2; 1 МПа = 106 Па) и т.д., а в технической системе – в килограммах силы на квадратный миллиметр и т.д. (кгс/мм2, кгс/см2).

В сопромате часто рассматриваются поверхностные нагрузки , распределенные по длине элемента конструкции. Такие нагрузки характеризуются интенсивностью, обозначаемой обычно q и выражаемой в ньютонах на метр (Н/м, кН/м) или в килограммах силы на метр (кгс/м, кгс/см) и т.д.

Нагрузки по характеру изменения во времени

По характеру изменения во времени выделяют статические нагрузки - нарастающие медленно от нуля до своего конечного значения и в дальнейшем не изменяющиеся; идинамические нагрузки вызывающие большие силы инерции.

28.Динамическое, циклическое нагружение, понятие предела выносливости.

Динамическая нагрузка – нагрузка, которая со- провождается ускорением частиц рассматри- ваемого тела или соприкасающихся с ним де- талей. Динамическое нагружение возникает при приложении быстро возрастающих усилий или в случае ускоренно- го движения исследуемого тела. Во всех этих случаях необходимо учитывать силы инерции и возникающее движение масс системы. Кроме того, динамические нагрузки можно подразделить на ударные и повторно-перемен- ные.

Ударная нагрузка (удар) – нагружение, при ко- тором ускорения частиц тела резко изменяют свою величину за очень малый промежуток времени (внезапное приложение нагрузки). Заметим, что, хотя удар и относится к динамическим видам нагружения, в ряде случаев при расчете на удар силами инерции пренебрегают.

Повторно-переменное (циклическое) нагруже- ние – нагрузки, меняющиеся во времени по ве- личине (а возможно и по знаку).

Циклическое нагружение-изменение механических и физических свойств материала под длительным действием циклически изменяющихся во времени напряжений и деформаций.

Преде́л выно́сливости (также преде́л уста́лости) - в науках о прочности: одна из прочностных характеристик материала, характеризующих его выносливость , то есть способность воспринимать нагрузки, вызывающие циклические напряжения в материале.

29.Понятие усталости материалов, факторы, влияющие на устойчивость к усталостному разрушению.

Усталость материала - в материаловедении - процесс постепенного накопления повреждений под действием переменных (часто циклических) напряжений, приводящий к изменению его свойств, образованию трещин, их развитию и разрушению материала за указанное время.

Влияние концентрации напряжений

В местах резкого изменения поперечных размеров детали, отверстий, проточек, пазов, резьбы и т.д., как показано в п. 2.7.1, возникает местное повышение напряжений, значительно снижающее предел выносливости по сравнению с таковым для гладких цилиндрических образцов. Это снижение учитывается введением в расчеты эффективного коэффициента концентрации напряжений , представляющего отношение предела выносливости гладкого образца при симметричном цикле к пределу выносливостиобразца тех же размеров, но имеющего тот или иной концентратор напряжения:

.

2.8.3.2. Влияние размеров детали

Экспериментально установлено, что с увеличением размеров испытуемого образца предел его выносливости понижается (масштабный эффект) . Это объясняется тем, что с увеличением размеров возрастает вероятность неоднородности структуры материалов и его внутренних дефектов (раковины, газовые включения), а также тем, что при изготовлении образцов малого размера имеет место упрочнение (наклеп) поверхностного слоя на относительно большую глубину, чем у образцов больших размеров.

Влияние размеров деталей на значение предела выносливости учитывается коэффициентом (масштабный фактор) , представляющим собой отношение предела выносливости детали заданных размеров к пределу выносливостилабораторного образца подобной конфигурации, имеющего малые размеры:

.

2.8.3.3. Влияние состояния поверхности

Следы режущего инструмента, острые риски, царапины являются очагом возникновения усталостных микротрещин, что приводит к снижению предела выносливости материала.

Влияние состояния поверхности на предел выносливости при симметричном цикле характеризуется коэффициентом качества поверхности , который представляет собой отношение предела выносливости детали с данной обработкой поверхности к пределу выносливоститщательно полированного образца:

.

2.8.3.4. Влияние поверхностного упрочнения

Различные способы поверхностного упрочнения (механическое упрочнение, химикотермическая и термическая обработка) могут существенно повысить значение коэффициента качества поверхности (до 1,5 … 2,0 и более раз вместо 0,6 … 0,8 раз для деталей без упрочнения). Это учитывается при расчетах введением коэффициента .

2.8.3.5. Влияние асимметрии цикла

Причиной усталостного разрушения детали являются длительно действующие переменные напряжения. Но, как показали эксперименты, с увеличением прочностных свойств материала увеличивается их чувствительность к асимметрии цикла, т.е. постоянная составляющая цикла «вносит свой вклад» в снижение усталостной прочности. Этот фактор учитывается коэффициентом.

Воздействия, испытываемые стойкой от согнувшей ее руки (см. рис. 42), доской от груза (см. рис. 44), цилиндрическим стерж­нем болта при навинчивании гайки гаечным ключом (см. рис. 45) и т. д., представляют собой внешние силы или нагрузки . Силы, возникающие в местах закрепления стойки и опирания доски, называются реакциями .

Рис. 42

Рис. 44


Рис. 45

По способу приложения нагрузки делятся на сосредоточенные и распре­деленные (рис. 49).

Виды и классификация нагрузок:

Сосредоточенные нагрузки передают свое действие через,очень малые площади. Примерами таких нагрузок могут служить давление колес железнодорожного вагона на рельсы, давление тележки тали на монорельс и т. д.

Распределенные нагрузки действуют на сравнительно большой площади. Например, вес станка передается через станину на всю площадь соприкосновения с фундаментом.

По продолжительности действия принято различать постоянные и переменные нагрузки. Примером постоянной нагрузки может слу­жить давление подшипника скольжения - опоры валов и осей - и его соб­ственный вес на кронштейн.

Переменной нагрузке подвержены в основном детали механизмов пери­одического действия. Одним из таких механизмов служит зубчатая переда­ча, у которой зубья в зоне контакта смежных пар зубчатых колес испыты­вают переменную нагрузку.

По характеру действия нагрузки могут быть статическими и динамическими . Статические нагрузки почти не изменяются в тече­ние всего времени работы конструкции (например, давление ферм на опо­ры).

Динамические нагрузк и действуют непродолжительное время. Их воз­никновение связано в большинстве случаев с наличием значительных уско­рений и сил инерции.

Динамические нагрузки испытывают детали машин ударного действия, таких, как прессы, молоты и т. д. Детали кривошипно-шатунных механиз­мов также испытывают во время работы значительные динамические на­грузки от изменения величины и направления скоростей, то есть наличия ускорений.

Постоянные нагрузки. (q ) В зависимости от продолжи­тельности действия нагрузки делят на постоянные и вре­менные. Постоянными нагрузками являются вес несу­щих и ограждающих конструкций зданий и сооружений, вес и давление грунтов, воздействие предварительного напряжения железобетонных конструкций.

Временные нагрузки. Длительные нагрузки(P) . К ним относятся: вес стационарного оборудования на перекрытиях - станков, аппаратов, двигателей, емкостей и т. п.; давление газов, жидкостей, сыпучих тел в емко­стях; вес специфического содержимого в складских по­мещениях, холодильников, архивов, библиотек и подоб­ных зданий и сооружений; установленная нормами часть временной нагрузки в жилых домах, в служебных и бы­товых помещениях; длительные температурные техноло­гические воздействия от стационарного оборудования; нагрузки от одного подвесного или одного мостового кра­на, умноженные на коэффициенты: 0,5, 0,6..в зависимости от вида крана

Кратковременные нагрузки.(S) К ним отно­сятся: вес людей, деталей, материалов в зонах обслужи­вания и ремонта оборудования - проходах и других сво­бодных от оборудования участках; часть нагрузки на перекрытия жилых и общественных зданий; нагрузки, возникающие при изготовлении, перевозке и монтаже элементов конструкций; нагрузки от подвесных и мосто­вых кранов, используемых при возведении или эксплуа­тации зданий и сооружений; снеговые и ветровые нагруз­ки; температурные климатические воздействия.

Особые нагрузки. К ним относятся: сейсмиче­ские и взрывные воздействия; нагрузки, вызываемые неисправностью или поломкой оборудования и резким нарушением технологического процесса (например, при резком повышении или понижении температуры и т.п.); воздействия неравномерных деформаций основания, со­провождающиеся коренным изменением структуры грун­та (например, деформации просадочных грунтов при замачивании или вечиомерзлых грунтов при оттаива­нии), и др.

Нормативные нагрузки . Они устанавливаются норма­ми или по номинальным значениям. Норма­тивные постоянные нагрузки принимают по проектным значениям геометрических и конструктивных параметров и по средним значениям плотности. Нормативные вре­менные технологические и монтажные нагрузки уста­навливают по наибольшим значениям, предусмотренным для нормальной эксплуатации; снеговые и ветровые - по средним из ежегодных неблагоприятных значений или по неблагоприятным значениям, соответствующим определенному среднему периоду их повторений.

Расчетные нагрузки. Их значения при расчете конст­рукций на прочность и устойчивость определяют умно­жением нормативной нагрузки на коэффициент надеж­ности по нагрузке γf, обычно больше, чем единица.Коэффициент надежности при действии веса бетонных и железобетонных конструкций γ f -1>1. Коэффициент надежности при действии веса кон­струкций, применяемый в расчете на устойчивость по­ложения против всплытия, опрокидывания и скольже­ния, а также в других случаях, когда уменьшение массы ухудшает условия работы конструкции, принят γ f=0,9. При расчете конструкций на стадии возведения расчетные кратковременные нагрузки умножают на ко­эффициент 0,8. При расчете конструкций по деформаци­ям и перемещениям (по второй группе предельных со­стояний) расчетные нагрузки принимают равными нор­мативным значениям с коэффициентом γt = 1.


Сочетание нагрузок. Конструкции должны быть рас­считаны на различные сочетания нагрузок или соответ­ствующие им усилия, если расчет ведут по схеме неупру­гого состояния. В зависимости от состава учитываемых нагрузок различают: основные сочетания, включающие постоянные, длительные и кратковременные нагрузки или усилия от них; особые сочетания, включающие по­стоянные, длительные, возможные кратковременные и одна из особых нагрузки или усилия от них.

В основных сочетаниях при учете не менее двух вре­менных нагрузок их расчетные значения (или соответст­вующих им усилий) умножают на коэффициенты соче­тания равные: для длительных нагрузок ф1 = 0,95; для кратковременных ф2=0,9. При учете же одной времен­ной нагрузки ф1=ф2 = l. Нормами допускается при учете трех и более кратковременных нагрузок их расчетные значения умножать на коэффициенты сочетаний: ф 2 =l- для первой по степени важности кратковременной на­грузки; ф 2 = 0,8 - для второй; ф2 = 0,6 - для остальных.

В особых сочетаниях для длительных нагрузок ф1= 0,95, для кратковременных ф 2 =0,8, кроме случаев, оговоренных в нормах проектирования зданий и соору­жений в сейсмических районах.

Основные понятия технической механики

Современное производство, определяющееся высокой механизацией и автоматизацией, предлагает использование большого количества разнообразных машин, механизмов, приборов и других устройств. Конструирование, изготовление, эксплуатация машин невозможна без знаний в области механики.

Техническая механика – дисциплина, вмещающая в себя основные механические дисциплины: теоретическую механику, сопротивление материалов, теорию машин и механизмов, детали машин и основы конструирования.

Основными задачами в технике являются обеспечения прочности, жесткости , устойчивости инженерных конструкций, деталей машин и приборов.

Сопротивлением материалов – это наука, в которой изучаются принципы и методы расчетов на прочность, жесткость и устойчивость.

Прочность – это способность конструкции в определенных пределах выдерживать внешние нагрузки без разрушения.

Жесткость – это способность конструкции в определенных пределах воспринимать действие внешних нагрузок без изменения геометрических размеров (не деформируясь).

Устойчивость – это способность конструкции сохранять свою форму и равновесие в нагруженном состоянии, а так же самостоятельно восстанавливать первоначальное состояние после того, как ей было дано некоторое отклонение от состояния равновесия.

Кроме указанных требований конструкция должна быть экономичной, ее масса и габариты должны быть минимальными. Для этого она должна иметь рациональную форму и размеры.

Классификация нагрузок

Различают внешние и внутренние силы и моменты сил.

Внешними силами (P ) называются силы, действующие на точки (тела) данной системы со стороны материальных точек (тел), не принадлежащих этой системе. Внешние силы (нагрузка) – это активные силы и реакции связи.

Внутренними силами (Q ) называют силы взаимодействия между точками (телами) данной системы. Они действуют и в отсутствии внешних нагрузок. При действии на тело внешних сил возникают дополнительные внутренние силы , сопровождающие деформацию. Эти силы сопротивляются стремлению внешних сил изменить форму тела или отделить одну часть от другой. Мы будем изучать только дополнительные внутренние силы.

По способу приложения нагрузки делятся на:

1) объемные – распределенные по объему тела и приложенные к каждой его частице (собственный вес конструкции, силы магнитного взаимодействия);

2) поверхностные – приложенные к участкам поверхности и характеризующие непосредственное контактное взаимодействие объекта с окружающими телами:

а) сосредоточенные (P 1 ) – нагрузки, действующие по площадке, размеры которой малы по сравнению с размерами самого элемента конструкции (давление обода колеса на рельс);



б)распределенные (P 2 )нагрузки, действующие по площадке (или длине), размеры которой не малы по сравнению с размерами самого элемента конструкции (гусеницы трактора давят на балку моста).

Распределенные нагрузки характеризуются интенсивностью q [Н/м ] или [Н/м 2 ]. Если q интенсивность нагрузки, распределенной вдоль элемента длиной a , то

Если q const, ее можно вынести за знак интеграла, тогда получим:

P 2 = q a .

Нагрузки могут быть постоянными и временными. Постоянные действуют всегда или в течение достаточно длительного времени (например, собственный вес конструкции). Временные действуют эпизодически (например, давление ветра).

По характеру действия нагрузки делятся на:

1.статические – прикладывается медленно, возрастая от нуля до конечного значения, и не изменяются;

2.динамические – изменяют величину или направление за короткий промежуток времени и сопровождаются появлением ускорений элементов конструкций. К ним относятся:

а) внезапные нагрузки– действуют сразу на полную силу (колесо локомотива, заезжающего на мост),

б) ударные нагрузки – действуют на протяжении короткого времени (дизель-молот),

в) циклические нагрузки – действуют периодически(нагрузка на зубья зубчатого колеса).



Поделиться