В чем состоит геометрический смысл производной функции. Геометрический смысл производной

Конспект открытого урока преподавателя ГБПОУ «Педагогического колледжа № 4 Санкт-Петербурга»

Мартусевич Татьяны Олеговны

Дата: 29.12.2014.

Тема: Геометрический смысл производной.

Тип урока: изучение нового материала.

Методы обучения: наглядный, частично поисковый.

Цель урока.

Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его.

Образовательные задачи:

    Добиться понимания геометрического смысла производной; вывода уравнения касательной; научиться решать базовые задачи;

    обеспечить повторение материала по теме «Определение производной»;

    создать условия контроля (самоконтроля) знаний и умений.

Развивающие задачи:

    способствовать формированию умений применять приемы сравнения, обобщения, выделения главного;

    продолжить развитие математического кругозора, мышления и речи, внимания и памяти.

Воспитательные задачи:

    содействовать воспитанию интереса к математике;

    воспитание активности, мобильности, умения общаться.

Тип урока комбинированный урок с использованием ИКТ.

Оборудование – мультимедийная установка, презентация Microsoft Power Point .

Этап урока

Время

Деятельность преподавателя

Деятельность учащегося

1. Организационный момент.

Сообщение темы и цели урока.

Тема: Геометрический смысл производной.

Цель урока.

Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его.

Подготовка студентов к работе на занятии.

Подготовка к работе на занятии.

Осознание темы и цели урока.

Конспектирование.

2. Подготовка к изучению нового материала через повторение и актуализацию опорных знаний.

Организация повторения и актуализации опорных знаний: определения производной и формулирование её физического смысла.

Формулирование определения производной и формулирование её физического смысла. Повторение, актуализация и закрепление опорных знаний.

Организация повторения и формирование навыка нахождения производной степенной функции и элемениарных функций.

Нахождение производной данных функций по формулам.


Повторение свойств линейной функции.

Повторение, восприятие чертежей и высказываний преподавателя

3. Работа с новым материалом: объяснение.

Объяснение смысла отношения приращения функции к приращению аргумента

Объяснение геометрического смысла производной.

Введение нового материала посредством словесных объяснений с привлечением образов и наглядных средств: мультимедийной презентации с анимацией.

Восприятие объяснения, понимание, ответы на вопросы учителя.

Формулирование вопроса преподавателю в случае затруднения.

Восприятие новой информации, её первичное понимание и осмысление.

Формулирование вопросов преподавателю в случае затруднения.

Создание конспекта.

Формулирование геометрического смысла производной.

Рассмотрение трех случаев.

Конспектирование, выполнение рисунков.

4. Работа с новым материалом.

Первичное осмысление и применение изученного материала, его закрепление.

В каких точках производная положительна?

Отрицательна?

Равна нулю?

Обучение поиску алгоритма ответов на поставленные вопросы по графику.

Понимание и осмысление и применение новой информации для решения задачи.

5. Первичное осмысление и применение изученного материала, его закрепление.

Сообщение условия задачи.

Запись условия задачи.

Формулирование вопроса преподавателю в случае затруднения

6. Применение знаний: самостоятельная работа обучающего характера.

Решите задачу самостоятельно:

Применение полученных знаний.

Самостоятельная работа по решению задачи на нахождение производной по рисунку. Обсуждение и сверка ответов в паре, формулирование вопроса преподавателю в случае затруднения.

7. Работа с новым материалом: объяснение.

Вывод уравнения касательной к графику функции в точке.


Подробное объяснение вывода уравнения касательной к графику функции в точке с привлечением в качестве наглядности в виде мультимедийной презентации, ответы на вопросы учащихся.

Вывод уравнения касательной совместно с преподавателем. Ответы на вопросы преподавателя.

Конспектирование, создание рисунка.

8. Работа с новым материалом: объяснение.

В диалоге со студентами вывод алгоритма нахождения уравнения касательной к графику данной функции в данной точке.

В диалоге с преподавателем вывод алгоритма нахождения уравнения касательной к графику данной функции в данной точке.

Конспектирование.

Сообщение условия задачи.

Обучение применению полученных знаний.

Организация поиска путей решения задачи и их реализация. подробный разбор решения с объяснением.

Запись условия задачи.

Выдвижение предположений о возможных путях решения задачи при реализации каждого пункта плана действий. Решение задачи совместно с преподавателем.

Запись решения задачи и ответа.

9. Применение знаний: самостоятельная работа обучающего характера.

Индивидуальный контроль. Консультирование и помощь студентам по мере необходимости.

Проверка и объяснение решения с использованием презентации.

Применение полученных знаний.

Самостоятельная работа по решению задачи на нахождение производной по рисунку. Обсуждение и сверка ответов в паре, формулирование вопроса преподавателю в случае затруднения

10. Домашнее задание.

§48, задачи 1 и 3, разобраться в решении и записать его в тетрадь, с рисунками.

№ 860 (2,4,6,8),

Сообщение домашнего задания с комментариями.

Запись домашнего задания.

11. Подведение итогов.

Повторили определение производной; физический смысл производной; свойства линейной функции.

Узнали, в чём заключается геометрический смысл производной.

Научились выводить уравнение касательной к графику данной функции в данной точке.

Корректировка и уточнение итогов урока.

Перечисление итогов урока.

12. Рефлексия.

1. Вам было на уроке: а) легко; б) обычно; в) трудно.

а) усвоил(а) полностью, могу применить;

б) усвоил(а), но затрудняюсь в применении;

в) не усвоил(а).

3. Мультимедийная презентация на уроке:

а) помогала усвоению материала; б) не помогала усвоению материала;

в) мешала усвоению материала.

Проведение рефлексии.

Производной функции f (x) в точке х0 называется предел (если он существует) отношения приращения функции в точке х0 к приращению аргумента Δх, если прирост аргумента стремится к нулю и обозначается f ‘(x0). Действие нахождения производной функции называется дифференцированием.
Производная функции имеет такой физический смысл: производная функции в заданной точке - скорость изменения функции в заданной точке.

Геометрический смысл производной . Производная в точке x0 равна угловому коэффициенту касательной к графику функции y=f(x) в этой точке.

Физический смысл производной. Если точка движется вдоль оси х и ее координата изменяется по закону x(t), то мгновенная скорость точки:

Понятие дифференциала, его свойства. Правила дифференцирования. Примеры.

Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).

Это записывается так:

или

Или же


Свойства дифференциала
Дифференциал обладает свойствами, аналогичными свойствам производной:





К основным правилам дифференцирования относят:
1) вынесение постоянного множителя за знак производной
2) производная суммы, производная разности
3) производная произведения функций
4) производная частного двух функций (производная дроби)

Примеры.
Докажем формулу: По определению производной имеем:

Произвольный множитель можно выносить за знак предельного перехода (это известно из свойств предела), поэтому

Например: Найти производную функции
Решение: Воспользуемся правилом вынесения множителя за знак производной:

Достаточно часто приходится сначала упрощать вид дифференцируемой функции, чтобы, воспользоваться таблицей производных и правилами нахождения производных. Следующие примеры это наглядно подтверждают.

Формулы дифференцирования. Применение дифференциала в приближенных вычислениях. Примеры.





Применение дифференциала в приближенных вычислениях позволяет использовать дифференциал для приближенных вычислений значений функции.
Примеры .
С помощью дифференциала вычислить приближенно
Для вычисления данного значения применим формулу из теории
Введем в рассмотрение функцию а заданную величину представим в виде
тогда Вычислим

Подставляя все в формулу, окончательно получим
Ответ:

16. Правило Лопиталя для раскрытия неопределенностей вида 0/0 Или ∞/∞. Примеры.
Предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.

1)

17. Возрастание и убывание функции. Экстремум функции. Алгоритм исследования функции на монотонность и экстремум. Примеры .

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, большему значению аргумента соответствует большее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, большему значению аргумента соответствует меньшее значение функции, и её график идёт «сверху вниз». Наша убывает на интервалах убывает на интервалах .

Экстремумы Точку называют точкой максимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .
Точку называют точкой минимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .
Под окрестностью точки понимают интервал , где - достаточно малое положительное число.
Точки минимума и максимума называют точками экстремума, а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Чтобы исследовать функцию на монотонность , воспользуйтесь следующей схеме:
- Найдите область определения функции;
- Найдите производную функции и область определения производной;
- Найдите нули производной, т.е. значение аргумента, при которых производная равна нулю;
- На числовом лучи отметьте общую часть области определения функции и области определения ее производной, а на ней - нули производной;
- Определите знаки производной на каждом из полученных промежутков;
- По знакам производной определите, на которых промежутках функция возрастает, а на каких спадает;
- Запишите соответствующие промежутки через точку с запятой.

Алгоритм исследования непрерывной функции y = f(x) на монотонность и экстремумы :
1) Найти производную f ′(x).
2) Найти стационарные (f ′(x) = 0) и критические (f ′(x) не существует) точки функции y = f(x).
3) Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках.
4) Сделать выводы о монотонности функции и ее точках экстремума.

18. Выпуклость функции. Точки перегиба. Алгоритм исследования функции на выпуклость (Вогнутость) Примеры .

выпуклой вниз на интервале Х, если ее график расположен не ниже касательной к нему в любой точке интервала Х.

Дифференцируемая функция называется выпуклой вверх на интервале Х, если ее график расположен не выше касательной к нему в любой точке интервала Х.


Точка формула называется точкой перегиба графика функции y=f(x), если в данной точке существует касательная к графику функции (она может быть параллельна оси Оу) и существует такая окрестность точки формула, в пределах которой слева и справа от точки М график функции имеет разные направления выпуклости.

Нахождение интервалов на выпуклость:

Если функция y=f(x) имеет конечную вторую производную на интервале Х и если выполняется неравенство (), то график функции имеет выпуклость направленную вниз (вверх) на Х.
Эта теорема позволяет находитьть промежутки вогнутости и выпуклости функции, нужно лишь на области определения исходной функции решить неравенства и соответственно.

Пример : Выяснить промежутки, на которых график функцииВыяснить промежутки, на которых график функции имеет выпуклость направленную вверх и выпуклость направленную вниз. имеет выпуклость направленную вверх и выпуклость направленную вниз.
Решение: Областью определения этой функции является все множество действительных чисел.
Найдем вторую производную.


Область определения второй производной совпадает с областью определения исходной функции, поэтому, чтобы выяснить интервалы вогнутости и выпуклости, достаточно решить и соответственно. Следовательно, функция выпуклая вниз на интервале формула и выпуклая вверх на интервале формула.

19) Асимптоты функции. Примеры.

Прямая называется вертикальной асимптотой графика функции , если хотя бы одно из предельных значений или равно или .

Замечание. Прямая не может быть вертикальной асимптотой, если функция непрерывна в точке . Поэтому вертикальные асимптоты следует искать в точках разрыва функции.

Прямая называется горизонтальной асимптотой графика функции , если хотя бы одно из предельных значений или равно .

Замечание. График функции может иметь только правую горизонтальную асимптоту или только левую.

Прямая называется наклонной асимптотой графика функции , если

ПРИМЕР:

Задание. Найти асимптоты графика функции

Решение. Область определения функции:

а) вертикальные асимптоты: прямая - вертикальная асимптота, так как

б) горизонтальные асимптоты: находим предел функции на бесконечности:

то есть, горизонтальных асимптот нет.

в) наклонные асимптоты :

Таким образом, наклонная асимптота: .

Ответ. Вертикальная асимптота - прямая .

Наклонная асимптота - прямая .

20) Общая схема исследования функции и построение графика. Пример.

a.
Найти ОДЗ и точки разрыва функции.

b. Найти точки пересечения графика функции с осями координат.

2. Провести исследование функции с помощью первой производной, то есть найти точки экстремума функции и интервалы возрастания и убывания.

3. Исследовать функцию с помощью производной второго порядка, то есть найти точки перегиба графика функции и интервалы его выпуклости и вогнутости.

4. Найти асимптоты графика функции: а) вертикальные, b) наклонные.

5. На основании проведенного исследования построить график функции.

Заметим, что перед построением графика полезно установить, не является ли данная функция четной или нечетной.

Вспомним, что функция называется четной, если при изменении знака аргумента значение функции не меняется: f(-x) = f(x) и функция называется нечетной, если f(-x) = -f(x) .

В этом случае достаточно исследовать функцию и построить её график при положительных значениях аргумента, принадлежащих ОДЗ. При отрицательных значениях аргумента график достраивается на том основании, что для четной функции он симметричен относительно оси Oy , а для нечетной относительно начала координат.

Примеры. Исследовать функции и построить их графики.

Область определения функции D(у)= (–∞; +∞). Точек разрыва нет.

Пересечение с осью Ox : x = 0,у= 0.

Функция нечетная, следовательно, можно исследовать ее только на промежутке

Если в данном случае отношения (1) имеют конечный придел, он обозначается как:

В первом случае -- производная слева, во втором -- производная справа.

Существование предела говорит о равносильности и равенстве левой и правой производной:

Если же левая и правая производные неравны, то в данной точке существуют касательные не параллельные OY (точка М1, рис.2). В точках М2, М3 отношения (1) стремятся к бесконечности.

Для точек N лежащих слева от M2, $\Delta $x $

Справа от $M_2$, $\Delta $x $>$ 0, но выражение также f(x + $\Delta $x) -- f(x) $

Для точки $M_3$ слева $\Delta $x $$ 0 и f(x + $\Delta $x) -- f(x) $>$ 0, т.е. выражения (1) и слева, и справа положительны и стремятся к +$\infty $ как при приближении $\Delta $x к -0, так и к +0.

Случай отсутствия производной в конкретных точках прямой (x = c) представлен на рисунке 3.

Рисунок 3. Отсутствие производных

Пример 1

На рисунке 4 изображен график функции и касательной к графику в точке с абсциссой $x_0$. Найти значение производной функции в абсциссе.

Решение. Производная в точке равна отношению~приращения функции к приращению аргумента. Выберем на касательной две точки с целочисленными координатами. Пусть, например, это будут точки F (-3,2) и C (-2.4).



Поделиться