Тяговый двигатель тл 2к. Назначение и технические данные

1.2 Принцип работы тягового электродвигателя ТЛ-2К 11

1.3 Основные неисправности и причины их возникновения 11

Глава II. Методы диагностирования 15

2.1 Обзор и описания методов диагностирования 15

2.2 Способы очистки тягового электродвигателя 17

Глава III. Диагностика тягового электродвигателя 23

3.2. Анализ результатов и принятие решения по организации ремонта 29

3.3. Техника безопасности 31

Заключение 36

Список использованной литературы 37

Введение

Тяговый электродвигатель «ТЛ-2К» установлен на электровозы серии ВЛ, предназначен для индивидуального привода колёсной пары. Крутящий момент передаётся на ось посредством шарнирной муфты. Двигатели постоянного тока с последовательным возбуждением, 6-полюсные с добавочными полюсами. Двигатели имеют независимую вентиляцию. Тяговые электродвигатели преобразуют поступающую из контактной сети электрическую энергию в механическую работу, затрачиваемую на преодоление всех сил сопротивления движению поезда и силы его инерции при ускоренном движении.

Модель тягового электродвигателя постоянного тока электрического подвижного состава как объекта диагностирования включает в себя электроизоляционную конструкцию, коллекторно-щеточный аппарат и механическую часть. Поэтому отказы тяговых двигателей имеют различную природу и могут происходить вследствие:

– пробоя изоляции и межвитковых замыканий обмоток якоря;

– пробоя изоляции и межвитковых замыканий обмоток главных и дополнительных полюсов;

– пробоя изоляции компенсационной обмотки;

– повреждений выводов катушек полюсов;

– повреждений выводных кабелей, выплавления припоя из петушков коллектора;

– разрушения якорных бандажей;

– повреждения якорных подшипников;

– повреждения пальцев, кронштейнов и щеткодержателей;

– кругового огня по коллектору.

Необходимо отметить, что для определения неисправностей тяговых двигателей электровозов и электропоездов можно использовать одинаковые подходы.

Определению неисправностей в электрических машинах посвящено значительное количество публикаций в периодической печати, имеются научные монографии и патенты.

В последние годы активно внедряется методология диагностирования зарождающихся дефектов роторных узлов, в т.ч. и подшипников. Использование системы диагностирования, ориентированной на обнаружение зарождающихся дефектов и прогнозирование оптимальных сроков проведения технических обслуживаний, позволяет обеспечить максимально возможный экономический эффект за счет снижения трудозатрат, расхода запасных частей и простоев подвижного состава.

Глава I. Назначение и работа тягового электродвигателя тл-2к

1.1 Назначение тягового двигателя тл-2к

На электровозе ВЛ10 установлены восемь тяговых электродвигателей типа ТЛ2К. Тяговый электродвигатель постоянного тока ТЛ2К предназначен для преобразования электрической энергии, получаемой из контактной сети, в механическую. Вращающий момент с вала якоря электродвигателя передается на колесную пару через двустороннюю одноступенчатую цилиндрическую косозубую передачу. При такой передаче подшипники двигателя не получают добавочных нагрузок по аксиальному направлению. Подвеска электродвигателя опорно-осевая. Электродвигатель с одной стороны опирается моторно-осевыми подшипниками на ось колесной пары электровоза, а с другой на раму тележки через шарнирную подвеску и резиновые шайбы. Система вентиляции независимая, с подачей вентилирующего воздуха сверху в коллекторную камеру и выбросом сверху с противоположной стороны вдоль оси двигателя. Электрические машины обладают свойством обратимости, заключающимся в том, что одна и та же машина может работать как двигатель и как генератор. Благодаря этому тяговые электродвигатели используют не только для тяги, но и для электрического торможения поездов. При таком торможении тяговые двигатели переводят в генераторный режим, а вырабатываемую ими за счет кинетической или потенциальной энергии поезда электрическую энергию гасят в установленных на электровозах резисторах (реостатное торможение) или отдают в контактную сеть (рекуперативное торможение).

Все тяговые двигатели постоянного тока вагонов метрополитена имеют в основном одинаковое устройство. Двигатель состоит из остова, четырех главных и четырех добавочных полюсов, якоря, подшипниковых щитов, щеточного аппарата, вентилятора.

Введение

Электроподвижной состав железных дорог является важнейшей составной частью железнодорожного транспорта страны. Эффективность работы ЭПС во многом определяет и эффективность всей системы железнодорожного транспорта. Одним из показателей эффективности ЭПС является его надежность. Как следует из статистических данных МПС РФ, повреждаемость ЭПС все еще остается на достаточно высоком уровне. Число порч и неисправностей ЭПС на протяжении последних лет находится на уровне 1-2 случая на 1 млн. км пробега.

Важнейшим элементом ЭПС являются его тяговые электродвигатели (ТЭД). Как следует из многочисленных исследований различных авторов, ТЭД является одним из элементов конструкции ЭПС, ограничивающих эксплуатационную надежность последнего. И в настоящее время, на протяжении последних шести лет, число порч и неисправностей ТЭД устойчиво находится на уровне (22 - 24)% от общего числа повреждений ЭПС. Поэтому, задача повышения надежности ТЭД, во многом определяющей надежность ЭПС, и в настоящее время является актуальной.

Высокая повреждаемость ТЭД в эксплуатации порождается действием различных факторов. Основным же из них является низкое качество ремонта двигателей в локомотивных депо и на локомотиворемонтных заводах. Повреждаемость ТЭД, вызванная действием именно этого фактора, превышает 50% от общего количества отказов ТЭД.

Низкое качество ремонта ТЭД может быть связано как с несовершенством технологий ремонта, так и с нарушениями технологической дисциплины при производстве работ. Однако, в любом случае, число случаев выдачи на линию ТЭД с не выявленными дефектами должно быть сведено к минимуму. Эту задачу решает система послеремонтных испытаний ТЭД. Поэтому, высокий процент отказов ТЭД на линии, по причине низкого качества ремонта, однозначно свидетельствует о неэффективности существующей системы послеремонтного контроля технического состояния ТЭД. Тяговые электродвигатели выходят из строя из-за проявления различных неисправностей и дефектов. Одной из наиболее часто встречающихся разновидностей повреждений ТЭД является нарушение нормальной коммутации и возникновение «кругового огня по коллектору». Как известно, среди различных причин, способных привести к данному повреждению двигателя во время эксплуатации, одной, из наиболее мощных причин возникновения «круговых огней» является неточная установка щеток тягового двигателя на нейтрали. Помимо ухудшения условий коммутации, сдвиг щеток с нейтрали вызывает расхождение электромеханических характеристик отдельных тяговых электродвигателей электровоза. Это приводит к неравномерной токовой нагрузке отдельных двигателей, что, в конечном итоге, снижает тяговые возможности электровоза. Кроме этого, токовая перегрузка тягового двигателя является еще одним провоцирующим фактором возникновения «круговых огней». Неравномерное распределение токов тяговых электродвигателей способно, так же, вызывать неверную работу современных автоматических систем управления ЭПС.

Конструкция тягового двигателя должна обеспечивать высокую степень использования активных и конструктивных материалов машины. Все узлы и детали электродвигателя рассчитываются на высокую механическую прочность при динамических нагрузках во время движения электровоза. Конструкция тягового двигателя должна предусматривать удобное техническое обслуживание, а также легкость замены некоторых деталей.

1.
Характеристика тягового электродвигателя ТЛ-2К1

.1 Назначение тягового электродвигателя ТЛ-2К1

Тяговый электродвигатель постоянного тока ТЛ-2К1 предназначен для преобразования электрической энергии, получаемой из контактной сети, в механическую в тяговом режиме, а в рекуперативном режиме-для преобразования механической инерционной энергии электровоза в электрическую. Вращающий момент с вала якоря электродвигателя передается на колесную пару через двустороннюю одноступенчатую цилиндрическую косозубую передачу. При такой передаче подшипники электродвигателя не получают добавочных нагрузок по аксиальному направлению. Подвешивание электродвигателя опорно-осевое. С одной стороны он опирается моторно-осевыми подшипниками на ось колесной пары электровоза, а с другой - на раму тележки через шарнирную подвеску и резиновые шайбы.

Рис 1.1 Общий вид тягового электродвигателя ТЛ2К-1: 1-гайка специальная с пружинной шайбой; 2- вал якоря; 3- трубка для смазки якорных подшипников; 4- крышка верхнего смотрового люка; 5 - большой выхлопной кожух; 6 - малый выхлопной кожух; 7,8 - букса и вкладыш моторно-осевого подшипника; 9 - нижние смотровые люки

.2
Конструкция и техническая характеристика тягового электродвигателя ТЛ-2К1

Тяговый электродвигатель ТЛ-2К1 состоит из остова, якоря, щеточного аппарата и подшипниковых щитов.

Остов представляет собой отливку из стали марки 25Л-П цилиндрической формы и служит одновременно магнитопроводом. К нему прикреплены шесть главных и шесть дополнительных полюсов, поворотная траверса с шестью щеткодержателями и щиты с роликовыми подшипниками, в которых вращается якорь электродвигателя. Установку подшипниковых щитов производят в такой последовательности: собранный остов с полюсными и компенсационными катушками ставят стороной, противоположной коллектору, вверх. Индуктивным нагревателем нагревают горловину до температуры 100- 150 °С, вставляют и крепят щит восемью болтами М24 из стали 45. Затем поворачивают остов на 180°, опускают якорь, устанавливают траверсу и аналогично описанному выше вставляют другой щит и крепят его восемью болтами М24. С наружной поверхности остов имеет два прилива для крепления букс моторно-осевых подшипников, прилив и съемный кронштейн для подвешивания электродвигателя, предохранительные приливы для транспортировки.

Со стороны коллектора имеются три люка, предназначенных для осмотра щеточного аппарата и коллектора. Люки герметично закрываются крышками.

Крышка верхнего коллекторного люка укреплена на остове специальным пружинным замком, крышка нижнего люка - одним болтом М20 и специальным болтом с цилиндрической пружиной, а крышка второго нижнего люка - четырьмя болтами М12.

Для подвода воздуха имеется вентиляционный люк. Вентилирующий воздух выходит со стороны, противоположной коллектору, через специальный кожух, укрепленный на подшипниковом щите и остове. Выводы из электродвигателя выполнены кабелем марки ППСРМ-1-4000 площадью сечения 120 мм 2 . Кабели защищены брезентовыми чехлами с комбинированной пропиткой. На кабелях имеются ярлычки из иолихлорвиниловых трубок с обозначением ЯЯ, К и КК. Выводные кабели Я и ЯЯ соединены с обмотками якоря, дополнительных полюсов и с компенсационной, а выводные кабели К и КК соединены с обмотками главных полюсов.

Рис.1.2 Схемы соединения катушек полюсов со стороны коллектора (а) и противоположной (б) тягового электродвигателя

Сердечники главных полюсов набраны из рулонной электротехнической стали марки 2212 толщиной 0,5 мм, скреплены заклепками и укреплены на остове четырьмя болтами М24 каждый. Между сердечником главного полюса и остовом имеется одна стальная прокладка толщиной 0,5 мм. Катушка главного полюса, имеющая 19 витков, намотана на ребро из мягкой ленточной меди Л ММ размерами 1,95X65 мм, изогнута по радиусу для обеспечения прилегания к внутренней поверхности остова. Корпусная изоляция состоит из семи слоев стеклослюдинитовой ленты ЛСЭП-934-ТПл 0,13X30 мм (ГОСТ 13184 - 78*) с полиэтилене-рефталагной пленкой на лаке марки ПЭ-934 и двух слоев ленты технической лавсановой термоусаживающейся толщиной 0,22 мм (ТУ 17 ГССР 88-79). Один слой лавсановой ленты, промазанный лаком КО-919 (ГОСТ 16508 - 70), наматывают в середине слоев корпусной изоляции, а второй - в качестве восьмого слоя корпусной изоляции. Ленты наматывают с перекрытием в половину ширины.

Междувитковая изоляция выполнена из асбестовой бумаги в два слоя толщиной 0,2 мм каждый, пропитанной лаком КО-919 (ГОСТ 16508 - 70). Витковую и корпусную изоляции полюсных катушек выпекают в приспособлениях согласно разработанному технологическому процессу. Для улучшения рабочих характеристик электродвигателя применена компенсационная обмотка, расположенная в пазах, проштампованных в наконечниках главных полюсов, и соединенная с обмоткой якоря последовательно. Компенсационная обмотка состоит Из шести катушек, намотанных из мягкой прямоугольной медной проволоки ПММ размерами 3,28X22 мм, имеет 10 витков. В каждом пазу расположено по два витка. Корпусная изоляция состоит из шести слоев стеклослюдинитовой ленты ЛСЭК-5-СПл толщиной 0,11 мм (ГОСТ 13184 - 78*) и одного слоя ленты технической лавсановой термоусаживающейся толщиной 0,22 мм (ТУ 17 ГССР 8-78), уложенных с перекрытием в половину ширины ленты. Витковая изоляция имеет один слой стеклослюдинитовой ленты той же марки, она уложена с перекрытием в половину ширины ленты. Компенсационная обмотка в пазах закреплена клиньями из текстолита марки Б. Изоляция компенсационных катушек выпекается в приспособлениях. Сердечники дополнительных полюсов выполнены из толстолистового проката или поковки и укреплены на остове тремя болтами М20. Для уменьшения насыщения дополнительных полюсов между остовом и сердечниками дополнительных полюсов предусмотрены диамагнитные прокладки толщиной 7 мм. Катушки дополнительных полюсов намотаны на ребро из мягкой медной проволоки ПММ размерами 6X20 мм и имеют 10 витков каждая. Корпусная и покровная изоляции этих катушек аналогичны изоляции катушек главного полюса. Междувитковая изоляция состоит из асбестовых прокладок толщиной 0,5 мм, пропитанных лаком КО-919.

РИС. 1.3 Остов тягового электродвигателя ТЛ-2К1: дополнительный полюс; 2- катушка компенсационной обмотки; 3 - корпус; 4- прилив предохранительный; 5- главный полюс

Щеточный аппараттягового электродвигателя состоит из траверсы разрезного типа с поворотным механизмом, шести кронштейнов и шести щеткодержателей. Траверса стальная, отливка швеллерного сечения имеет по наружному ободу зубчатый венец, входящий в зацепление с шестерней поворотного механизма. В остове фиксирована и застопорена траверса щеточного аппарата болтом фиксатора, установленным на наружной стенке верхнего коллекторного люка, и прижата к подшипниковому щиту двумя болтами стопорного устройства: один - внизу остова, другой - со стороны подвешивания. Электрическое соединение кронштейнов траверсы между собой выполнено кабелями ППСРМ-150. Кронштейны щеткодержателя разъемные (из двух половин), закреплены болтами М20 на двух изоляционных пальцах, установленных на траверсе. Стальные шпильки пальцев спрессованы пресс-массой АГ-4В, на них насажены фарфоровые изоляторы.

Рис. 1.4 Стопорение траверсы тягового электродвигателя ТЛ-2К1: 1 - стопорное устройство; 2 - шестерня; 3 - болт фиксатора

Рис. 1.5 Щеточный аппарат тягового электродвигателя ТЛ-2К1

Траверса; 2- шестерня; 3 - кронштейны; 4 - щеткодержатели

Щеткодержательимеет две цилиндрические пружины, работающие на растяжение. Пружины закреплены одним концом на оси, вставленной в отверстие корпусащеткодержателя, другим - на оси нажимного пальца с помощью винта, которым регулируют натяжение пружины. Кинематика нажимного механизма выбрана так, что в рабочем диапазоне обеспечивается практически постоянное нажатие на щетку. Кроме того, при наибольшем допустимом износе щетки нажатие пальца на щетку автоматически прекращается. Это позволяет предотвратить повреждение рабочей поверхности коллектора гибкими проводами сработанных щеток. В окна щеткодержателя вставлены две разрезные щетки марки ЭГ-61А размерами 2(8X50X56) мм с резиновыми амортизаторами. Щеткодержатели к кронштейну крепятся шпилькой и гайкой. Для более надежного крепления и регулировки положения щеткодержателя относительно рабочей поверхности по высоте при износе коллектора на корпусе щеткодержателя и кронштейне предусмотрены гребенки.

Рис. 1.6 Щеткодержатель тягового электродвигателя ТЛ-2К1: 1-Цилиндрическая пружина; 2- отверстие корпуса щеткодержателя; 3- щетка; 4-нажимной палец; 5- винты

Якорь электродвигателя состоит из коллектора, обмотки, вложенной в пазы сердечника, набранного в пакет из рулонной электротехнической стали марки 2212 толщиной 0,5 мм, стальной втулки, задней и передней нажимных шайб, вала. В сердечнике имеется один ряд аксиальных отверстий для прохода вентилирующего воздуха. Передняя нажимная шайба одновременно служит корпусом коллектора. Все детали якоря собраны на общей втулке коробчатой формы, напрессованной на вал якоря, что обеспечивает возможность его замены.

Якорь имеет 75 катушек и 25 секционных уравнительных соединений. Пайка концов обмотки и уравнительных соединений с петушками коллекторных пластин выполнена оловом 02(ГОСТ 860 - 75) на специальной установке токами высокой частоты.

Каждая катушка имеет 14 отдельных проводников, расположенных по высоте в два ряда и по семь проводников в ряду. Они изготовлены из медного провода ПЭТВСД размерами 0,9X7,1/1,32X758 мм. Каждый пакет из семи проводников изолирован также лентой стеклослюдинитовой ЛСЭК-5-ТПл толщиной 0,09 мм с перекрытием в половину ширины ленты. Корпусная изоляция пазовой части катушки состоит из пяти слоев стеклослюдинитовой ленты ЛСЭК-5-ТПл размерами 0,09X20 мм, одного слоя ленты фторопластовой толщиной 0,03 мм и одного слоя стеклоленты ЛЭС толщиной 0,1 мм, уложенных с перекрытием в половину ширины ленты. Коллектор электродвигателя с диаметром рабочей поверхности 660 мм набран из медных пластин, изолированных друг от друга армированным коллекторным слюдопластом марки КИФЭА (ТУ 21-25-17-9-84), число пластин - 525. От нажимного конуса и втулки коллектора корпус коллектора изолирован корпусной изоляцией и изоляционным цилиндром, изготовленным из комбинированных материалов. Наружный слой - формовочный миканит марки ФФГ - О, З (ГОСТ 6122 - 75*), внутренний - пленкостеклоткань ГТП-2ПЛ (ТУ 16 503.124-78) толщиной 0,2 мм.

Общая толщина корпусной изоляции 3,6 мм, а изоляционного цилиндра - 2 мм.

Обмотка якоря имеет следующие данные: число пазов 75, шаг по пазам 1 - 13, число коллекторных пластин 525, шаг по коллектору 1 - 2, шаг уравнителей по коллектору 1 - 176. Якорные подшипники электродвигателя тяжелой серии с цилиндрическими роликами типа 80-42428М обеспечивают разбег якоря в пределах 6,3 - 8,1 мм. Наружные кольца подшипников запрессованы в подшипниковые щиты, а внутренние - на вал якоря. Подшипниковые камеры для предотвращения воздействия внешней среды и утечки смазки имеют уплотнение. Моторно-осевые подшипники состоят из латунных вкладышей, залитых по внутренней поверхности баббитом Б16(ГОСТ 1320 - 74*), и букс с постоянным уровнем смазки. Буксы имеют окно для подачи смазки. Для предотвращения поворота вкладышей предусмотрено в буксе шпоночное соединение.

Рис. 1.7 Якорь тягового электродвигателя ТЛ-2К1: Коллекторная пластина; 2- уравнительное соединение; 3- передняя нажимная шайба; 4- стальная втулка; 5-сердечник; 6- катушка; 7- задняя нажимная шайба; 8- вал якоря

Рис. 1.8 Схема соединения катушек якоря и уравнителей с коллекторными пластинами

Рис.1.9 Подшипниковый узел тягового электродвигателя

Моторно-осевые подшипникисостоят из вкладышей и букс с постоянным уровнем смазки, контролируемым по указателю. Каждая букса соединена с остовом специальным замком и закреплена четырьмя болтами М36Х2 из стали 45. Для облегчения завинчивания болты имеют четырехгранные гайки, упирающиеся в специальные упоры на остове. Растачивание горловин под моторно-осевые подшипники производят одновременно с растачиванием горловин под подшипниковые щиты. Поэтому буксы моторно-осевых подшипников невзаимозаменяемы. Букса отлита из стали 25Л-1. Каждый вкладыш моторно-осевых подшипников состоит из двух половин, в одной из которых, обращенной к буксе, сделано окно для подачи смазки. Вкладыши имеют бурты, фиксирующие их положение в осевом направлении. От проворачивания вкладыши предохраняют шпонками. С целью предохранения моторно-осевых подшипников от пыли и влаги ось между буксами закрыта крышкой. Вкладыши отлиты из латуни. Внутренняя их поверхность залита баббитом и расточена по диаметру 205,45+ 0,09 мм. После расточки вкладыши подгоняют по шейкам оси колесной пары. Для обеспечения регулировки натяга вкладышей в моторно-осевых подшипниках между буксами и остовом установлены стальные прокладки толщиной 0,35 мм, которые по мере износа наружного диаметра вкладышей снимают. Устройство, применяемое для смазывания моторно-осевых подшипников, поддерживает в них постоянный уровень смазки. В буксе имеются две сообщающиеся камеры. В смазку камеры погружена пряжа. Камера, заполненная смазкой, нормально не сообщается с атмосферой. По мере расходования смазки уровень ее в камере понижается.

Рис. 1.10 Моторно-осевой подшипник

Когда он станет ниже отверстия трубки, воздух поступает через эту трубку в верхнюю часть камеры, перегоняя из нее смазку через отверстие д в камеру. В результате уровень смазки в камере повысится и закроет нижний конец трубки 6. После этого камера опять будет разобщена с атмосферой, и перетекание смазки из нее в камеру прекратится. Таким образом, пока в запасной камере есть смазка, уровень ее в камере не будет понижаться. Для надежной работы этого устройства необходимо обеспечить герметичность камеры. Буксу заправляют смазкой по трубе через отверстие д под давлением с помощью специального шланга с наконечником.

В качестве смазки используют масло осевое ГОСТ 610-72*: в летний период - марки Л; в зимний - марки З.

Технические характеристикидвигателя следующие:

Напряжение на зажимах электродвигателя, В………………1500

Часовой режим

Ток, А………………………………………………………………….480

Мощность, кВт………………………………………………………..670

Частота вращения, об/мин…………………………………………...790

КПД………………………………………………………………….0,931

Продолжительный режим

Ток, А………………………………………………………………….410

Мощность, кВт………………………………………………………..575

Частота вращения, об/мин…………………………………………...830

КПД………………………………………………………………….0,936

Класс изоляции по нагревостойкости…………………………………F

Наибольшая частота вращения при

неизношенных бандажах об/мин…………………………………..1690

Передаточное число…………………………………………..……88/23

Сопротивление обмоток при температуре 20С, Ом:

главных полюсов……………………………………………...…..0,0254

дополнительных полюсов компенсационных катушек………….0,033

якоря…………………………………………………………………0,036

количество вентилирующего м(кубич.)воздуха не менее…………..95

Масса без шестерни, кг………………………………….…………5000

Рис.1.11 Электромеханические характеристики тягового электродвигателя ТЛ-2К1

Система вентиляции независимая, аксиальная, с подачей вентилирующего воздуха сверху в коллекторную камеру и выбросом вверх с противоположной стороны вдоль оси электродвигателя.

Рис. 1.12 Аэродинамические характеристики электродвигателя ТЛ-2К1:

Нп - полный напор; Нст - статический напор

1.3 Факторы, обуславливающие износ тягового электродвигателя ТЛ-2К1

В процессе эксплуатации электровоза возможны следующие повреждения в электрических машинах:

1. Повышенный износ щеток и сколы щеток. Причины: установлены слишком мягкие щетки; сильное искрение под щетками; чрезмерное нажатие на щетку; недопустимое биение коллектора; неравномерное нажатие на щетки; большой зазор между щеткой и окном щеткодержателя; ослаблен контакт гибких проводов щеток; велик зазор между коллектором и щеткодержателем; загрязнен коллектор; сырые щетки; некачественная обработка рабочей поверхности коллектора; выступание миканитовых пластин; неравномерный износ коллектора.

2. Повышенный или неравномерный износ коллектора. Причины: установлены слишком твердые щетки; чрезмерное нажатие на щетки; недопустимое искрение под щетками; неправильная расстановка щеток в осевом направлении; выступание коллекторных пластин; вибрация щеток.

3. Повышенное искрение щеток. Причины механического характера: тугая посадка щеток в щеткодержателе; неравномерное нажатие на щетки; слабое нажатие на щетки; большой зазор между щеткодержателем и коллектором; слабое крепление щеткодержателей и траверсы; плохая балансировка якоря; плохая обработка поверхности коллектора; выступает миканит между ламелями; нет фасок на ламелях; коллектор загрязнен; большое биение коллектора; выступание отдельных пластин коллектора; щетки установлены с перекосом по отношению к ламелям; не выдержано расстояние между щеткодержателями; траверса сдвинута с нейтрального положения; полюсы установлены неравномерно по окружности; не выдержаны установленные зазоры у дополнительных полюсов; попадание на коллектор масла и его паров. Причины электрического характера: нарушение контакта в месте присоединения гибких проводов щеток к щеткодержателю; низкое переходное сопротивление щеток; между- витковое замыкание в обмотке якоря; плохая пайка отдельных петушков коллектора; неправильная полярность полюсов; перегрузка электрических машин; быстрое изменение нагрузки; повышенное напряжение на коллекторе; междувитковое замыкание полюсных катушек или компенсационной обмотки.

4. Пробой изоляции обмоток электрических машин. Причины: увлажнение изоляции; попадание при сборке остова под катушку металлических стружек; ослабление крепления межкатушечных соединений и повреждение их изоляции; хрупкость и гигроскопичность изоляции из-за продолжительного превышения допустимой температуры нагрева электрических машин при перегрузках; естественный износ (старение изоляции); механические повреждения изоляции при разборке и сборке машин; перенапряжения коммутационные и атмосферные; попадание стружек в обмотку якоря; повреждение обмотки якоря при укладке его на пол без специальных прокладок.

5. Распайка соединения. Причины: перегрузка якоря током при работе или неподвижном состоянии, приводящая к выплавлению припоя из петушков коллектора; плохое качество самой пайки.

6. Превышение допустимой температуры нагрева подшипников якоря. Причины: загрязнение подшипника при сборке; загрязненная смазка; избыток смазки в подшипнике; изношены или разрушены детали подшипника; подшипник установлен с перекосом; мал радиальный зазор в подшипнике; трение в уплотнениях подшипников.

7. Превышение допустимой температуры нагрева моторно-осевых подшипников. Причины: недостаточная подача масла; загрязнение масла или шерстяной подбивки и попадание воды в масло; применение масла неподходящего сорта; уменьшение зазора между вкладышами и осью.

8. Выброс смазки из подшипниковых камер внутрь электродвигателя. Причины: большие зазоры в лабиринтных уплотнениях или перепрессовка смазки.

Вывод: в данном разделе рассмотрена техническая характеристика тягового электродвигателя, особенности его конструкции и представлены неисправности узлов и деталей тягового электродвигателя.

2. Технологический процесс ремонта тягового электродвигателя ТЛ-2К1

2.1 Алгоритм технологического процесса ремонта тягового электродвигателя ТЛ-2К1

Перед постановкой электровоза на канаву для технического обслуживания или текущего ремонта продувают тяговые электродвигатели сжатым воздухом.

При наружных осмотрах проверяют исправность действия замков, крышек коллекторных люков, болтовые крепления: моторно-осевых букс, кожухов зубчатой передачи, главных и дополнительных полюсов.

Внутренние узлы электродвигателя осматривают через коллекторные люки. Перед осмотром поверхности около коллекторных люков и их крышки тщательно очищают от пыли, грязи, снега, после чего снимают крышку и осматривают коллектор, щеткодержатели, щетки, кронштейны и их пальцы, расположенные против смотрового люка, а также видимую часть кабельного монтажа траверсы, якоря и полюсных катушек.

Коллектор должен иметь полированную блестящую поверхность коричневого оттенка (политуру) без царапин, рисок, вмятин и подгаров. Во всех случаях повреждения или загрязнения коллектора необходимо установить причины этих повреждений и устранить их. Грязь и следы смазки удаляют мягкой салфеткой, слегка смоченной в техническом спирте или бензине. Подгоревшие и поврежденные места конуса зачищают шкуркой КЗМ-28 и окрашивают красно-коричневой эмалью ГФ-92- ХС (ГОСТ 9151-75") до получения глянцевой поверхности. Недопустимо применять для протирки материалы, оставляющие жирные следы.

Небольшие царапины, выбоины и подгары на рабочей поверхности коллектора устраняют зачисткой при помощи шкурки КЗМ-28, закрепленной на специальной деревянной колодке, имеющей радиус, соответствующий радиусу коллектора, и ширину не менее 2/3 ширины рабочей поверхности коллектора.

Рис.2.1 Деревянная колодка для шлифовки коллекторов в собранном электродвигателе: 1- прижимная планка; 2- войлок; 3- шкурка КЗМ-28; 4- ручка

Зачистку следует производить только на вращающемся коллекторе, так как в противном случае это вызывает местные выработки. Более трудоемко устранение последствий кругового огня. Медь из межламельного пространства удаляют, по возможности сохраняя политуру на коллекторе. Удаление заусенцев рекомендуется производить неметаллической щеткой или кистью, например капроновой. При этом чешуйки меди следует загибать щеткой в меж- ламельное пространство, затем сжатым воздухом поднять их вновь. Операции повторить два-три раза до излома козырьков затяжек. Крупные заусенцы от затяжки меди удалить специальным ножом для снятия фасок. В случае повышенного износа всех щеток или же щеток одной стороны (со стороны конуса или со стороны петушка) тщательно осматривают коллектор и замеряют его биение. Причиной повышенного износа щеток может быть недостаточно тщательная обработка коллектора или же выступание отдельных миканитовых или медных пластин. Выступание миканитовых пластин устраняют продорожкой коллектора. Если необходимо, снимают фаски. Стружку и металлическую пыль тщательно выдувают сухим сжатым воздухом. Следует иметь в виду, что шлифовка уничтожает "политуру" и тем самым ухудшает контакт между коллектором и щетками. Поэтому без особой необходимости к ней прибегать не рекомендуется. теговой электродвигатель конструкция ремонт

Обработку коллектора непосредственно на электровозах производят как исключение. Если в этом возникла необходимость, то работу должен выполнить квалифицированный специалист, соблюдая скорость резания в пределах 150 - 200 м/мин.

Коллектор рекомендуется обтачивать в собственных подшипниках якоря, сначала обточив его резцом из твердого сплава, а потом прошлифовать шлифбруском Р-30. При проточке резцом из твердого сплава подача должна быть 0,15 мм, а при чистовой обточке - 0,045 мм на каждый оборот при скорости резания 120 м/мин.

Биение и выработку коллектора замеряют 1 раз в 2 - 3 мес. Наибольшая в эксплуатации выработка не должна превышать 0,5 мм, биение - 0,1 мм. Биение недопустимо, если оно возникает в результате местной деформации. После обточки коллектора на токарном станке биение в собранном электродвигателе не должно превышать 0,04 мм. Глубина про- дорожки должна быть в пределах 1,3 - 1,6 мм, фаска с каждой стороны пластины - 0,2X45°. Разрешается выполнять фаски 0,5 мм по высоте и 0,2 мм по ширине пластины.

Рис.2.2 Отделка пластин коллектора

У щеточного аппарата снимают крышку смотрового люка и проверяют состояние щеток, щеткодержателей, кронштейнов, пальцев кронштейнов, поворачивая траверсу щеткодержателей. Для этого следует отвернуть болты, крепящие кабели к двум верхним кронштейнам, и отвести кабели от траверсы, чтобы не повредить их; вывернуть болт фиксатора до выхода фиксатора из паза обоймы на остове; фиксатор развернуть на 180° и утопить в паз обоймы во избежание зацепления за пальцы кронштейнов щеткодержателей и накладку при повороте траверсы; отвернуть на 3 - 4оборота болты стопорных устройств специальным ключом с зевом 24 мм; через нижний коллекторный люк отвернуть шпильку разжимного устройства на траверсе в направлении "на себя", установив щель в месте разреза не более 2 мм; проворачивая плавно ключом-трещеткой валик шестерни поворотного механизма, подвести к верхнему или нижнему коллекторному люку все щеткодержатели и выполнить необходимые работы. Сначала подводят к верхнему коллектору люка два щеткодержателя со стороны вентиляционного патрубка, а затем остальные щеткодержатели, вращая траверсу в обратном направлении. Вход в зацепление места разреза траверсы с шестерней поворотного механизма недопустим. При осмотре с нижнего коллекторного люка щеткодержатели следует подводить в обратном порядке. Общая высота щетки должна быть не менее 30 мм (наименьшая допустимая высота - 28 мм - отмечена риской).

При замене щеток шунты скручивают друге другом во избежание свисания их с корпуса щеткодержателя в сторону траверсы и петушков коллектора. Шунт не должен попадать между нажимным пальцем и щеткой для исключения его перетирания. Наконечники шунтов надежно закрепляют на корпусе щеткодержателя.

Рис.2.3 Пришлифовка щеток

Рис.2.4 Фиксирующее устройство траверсы тягового электродвигателя для установки щеток на нейтраль

Обмотки и межкатушечные соединения осматривают одновременно с коллектором и щетками. Проверяют состояние крепления межкатушечных соединений, выводных кабелей, кабелей траверсы, шунтов щеток, крепление кабельных наконечников, состояние жил проводов у наконечников.

Поврежденный слой изоляции на кабелях восстанавливают с последующей окраской этого места красно-коричневой эмалью ГФ-92-ХС. Причины, вызвавшие перетирание изоляции кабелей, устраняют.

При повреждении изоляции полюсных катушек или неудовлетворительном состоянии бандажей якоря электродвигатель заменяют. Если внутри электродвигателя обнаружена влага, то его сушат горячим воздухом, после чего замеряют сопротивление изоляции силовой цепи электровоза. Если же при рабочей температуре электродвигателя оно окажется менее 1,5 МОм, замеряют сопротивление на каждом электродвигателе отдельно. Для этого отключают электродвигатель от силовой цепи, подкладывают под соответствующие контакты реверсора электроизоляционные прокладки. Затем замеряют мегомметром сопротивление изоляции якоря и обмотки возбуждения. Если обе цепи имеют низкое сопротивление изоляции, то электродвигатель просушивают. Когда одна цепь имеет высокое сопротивление изоляции, а другая низкое, рекомендуется выяснить причину понижения сопротивления: возможно механическое повреждение изоляции кабелей или же пробой пальца кронштейна. Изоляцию якоря проверяют, вынув все щетки из щеткодержателей, а изоляцию кабелей траверсы и пальцев кронштейнов, замерив сопротивление изоляции двух соседних кронштейнов при вынутых щетках. Если не удается обнаружить механическое или электрическое повреждение изоляции, тщательно просушивают электродвигатель. Если после сушки сопротивление изоляции не повысилось, электродвигатель заменяют. При замере сопротивления изоляции электродвигателей, в цепь которых включен вольтметр, последний нужно отключить и цепь его проверить отдельно. По окончании замера штангой снимают заряд с цепи, вынимают электроизоляционные прокладки из-под контактов реверсора, ставят реверсор в исходное положение, подключают вольтметр (если он был отключен), устанавливают щетки и присоединяют кабели к кронштейнам щеткодержателей (если их отсоединили при замерах). В зимнее время в связи с отпотеванием электродвигателей сопротивление изоляции замеряют при каждой постановке электровоза в помещение, а данные замеров записывают в книгу записей ремонта электровозов (форма ТУ-28).

При осмотре моторно-осевых подшипников на смотровой канаве остукиванием проверяют надежность крепления букс к остову, уровень и состояние смазки, отсутствие течи, плотность прилегания крышек.

Смешивание в моторно-осевых подшипниках масел различных марок недопустимо. При переводе с летних смазок на зимние и обратно шерстяную набивку заменяют, а камеры букс тщательно очищают. При обнаружении в камерах влаги, грязи, стружек смазку заменяют, тщательно очищают камеры и меняют фитили, а также улучшают уплотнение крышек. Добавление смазки и перезаправку выполняют согласно карте смазки. При ремонте ТР-1 проверяют радиальные зазоры между осью и вкладышем. Зазоры замеряют через специальные вырезы в защитной крышке оси колесной пары. Осматривая якорные подшипниковые узлы, проверяют затяжку болтов, крепящих щиты, а также сохранность и надежность крепления пробок смазочных отверстий, нет ли выброса смазки из подшипниковых камер внутрь электродвигателя. Причинами выброса смазки могут быть большие зазоры в лабиринтных уплотнениях или большое количество смазки. Смешивание смазки различных марок недопустимо. Для якорных подшипников применяют масло ЖРО ТУ 32. Если своевременно добавлять смазку в камеры якорных подшипников, то электродвигатель может находиться в эксплуатации до ремонта ТР-3 без замены смазки. При ремонте ТР-3 тяговые электродвигатели снимают с электровоза, очищают подшипники и подшипниковые щиты, проверяют состояние подшипников. В случае стоянки электровоза более 18 месяцев в подшипниках и камерах подшипниковых узлов электродвигателей смазку заменяют.

Появление чрезмерных шумов в подшипниках, вибрации электродвигателя, а также чрезмерное нагревание подшипников свидетельствуют об их ненормальной работе. Такие подшипники необходимо заменить. Допустимое превышение температуры подшипников тяговых электродвигателей не более 55 °С.

Перед снятием колесно-моторного блока с тележки электровоза сливают масло из букс моторно-осевых подшипников и кожухов зубчатой передачи. Снимают колесно-моторный блок и разбирают его. На привалочных поверхностях букс ставят клеймо-номер, относящийся к соответствующему электродвигателю. При демонтаже кожухов зубчатой передачи предварительно снимают крышки с

камер для сбора отработанной смазки, расположенных на подшипниковых щитах. Снимают шестерни с концов вала двигателя. Чтобы снять шестерню с вала, следует снять стопорящую гайку и установить вместо нее специальную гайку с прокладкой. Присоединяют трубку гидронасоса и создают давление. После того как шестерня сдвинется с места, её снимают, предварительно открутив гайку. Съем шестерни без специальной гайки не допускается.

Рис.2.5 Схема подвода смазки при съеме шестерни с вала тягового электродвигателя

До разборки тягового электродвигателя проверяют соответствие номеров подшипниковых щитов номеру остова, помещенному на торцах расточки под вкладыши. Номер подшипникового щита указан на привалочной поверхности бобышки крепления кожуха зубчатой передачи к щиту. Замеряют мегомметром напряжением 1000 В сопротивление изоляции обмоток якоря и полюсной системы относительно корпуса и между собой для выявления участков с пониженным сопротивлением изоляции.

Разборку тягового электродвигателя выполняют в следующем порядке. Устанавливают тяговый электродвигатель в горизонтальное положение и снимают подшипниковые крышки. Индукционным нагревателем или другим способом, обеспечивающим сохранность вала, снимают уплотнительные кольца, крышки устанавливают вновь на свои места. Отсоединяют кабели, подходящие к двум верхним кронштейнам траверсы; вынимают все щетки из окон щеткодержателей и закрепляют их нажимными пальцами на щеткодержателях; снимают кожух для выброса воздуха. Устанавливают тяговый электродвигатель на специальную подставку или кантователь коллектором вверх; демонтируют подшипниковый щит и траверсу; вынимают якорь и кладут его на специальную подушку с резиновой и войлочной прокладкой. Переворачивают остов; демонтируют подшипниковый щит со стороны, противоположной коллектору. Дальнейшую разборку узлов ведут на стеллажах. Производяточистку остова и продувают его сухим сжатым воздухом, осматривают на наличие трещин. Обнаруженные дефекты устраняют. Зачищают от забоин и заусенцев привалочные поверхности остова. Вентиляционные сетки, крышки коллекторных люков при наличии неисправностей и повреждений ремонтируют или заменяют. Крышки коллекторных люков должны плотно прилегать к остову, легко сниматься и устанавливаться. Прокладки и уплотнения надежно закрепляют на крышках. Запоры проверяют на плотное закрытие крышек и при необходимости исправляют. Осматривают устройства для фиксации, прижима и проворота траверсы. Обнаруженные дефекты устраняют. Смазывают отверстия под болты фиксатора, прижимов и валик шестерни проворота траверсы смазкой ВНИИ НП-232. Снимают стеклопластиковую крышку коробки выводов, очистив ее от пыли и грязи. В случае перебросов по пальцам тщательно зачищают поврежденный участок мелкозернистой шлифовальной шкуркой и покрывают красно-коричневой электроизоляционной эмалью ГФ-92-ХС не менее двух раз. При необходимости демонтажа изоляционных пальцев пользуются специальным ключом. Проверяется состояние резиновых втулок и надежность их посадки на кабелях и в отверстиях крышки остова. Поврежденные втулки заменяются. Проверяют состояние и крепление кабелей в коробке выводов и устраняют обнаруженные дефекты.

Осматривают главные и дополнительные полюсы, компенсационную обмотку. Убеждаются в надежности крепления, отсутствии повреждений изоляции, соответствии активного сопротивления, обмоток нормам, прочности посадки катушек главных и дополнительных полюсов на сердечниках, надежности установки уплотняющих клиньев между сердечником полюса и лобовой частью катушек главных полюсов. Простукиванием проверяют плотность посадки клиньев катушек компенсационной обмотки в пазах полюсов. Проверяют полюсную систему на отсутствие межвитковых замыканий в катушках. Катушки с поврежденной изоляцией, а также имеющие признаки ослабления посадки на сердечниках и в пазах полюсов отремонтируйте со снятием с остова. Прочность посадки катушек главных и дополнительных полюсов на сердечниках при затянутых болтах проверяют по видимым следам смещения, например натертость или зашлифованность на пружинных рамках, фланцах, полюсных наконечниках, поверхностях катушек. Пружинные рамки и фланцы с трещинами замените исправными. Установка сердечников с поврежденной резьбой не допускается. Затяжку полюсных болтов производят ключом и простукиванием молотком. Полюсные болты с дефектами, такими как сорванная резьба, изношенные или забитые грани головок, трещины и т. д. заменяют, ослабшие выворачивают. Пружинные шайбы при смене болтов осматривают, негодные подлежат замене. Подтяжку полюсных болтов производят при подогретых до температуры 180- 190 °С катушках. Головки полюсных болтов, где это предусмотрено чертежом, залейте компаундной массой. Проверьте расстановку полюсов в остове по окружности; замерьте расстояние между полюсами по диаметру. Указанные размеры должны соответствовать чертежу. Определяют состояние выводов катушек главных и дополнительных полюсов, а также компенсационной обмотки (изоляцию, отсутствие трещин и других дефектов). Поврежденную изоляцию выводных кабелей и межкатушечных соединений восстанавливают. Изолированная часть должна быть плотной и не иметь признаков оползания. Межкатушечные соединения и выводные кабели внутри остова прочно закрепляют скобами с установкой под скобы изоляционных прокладок. Контактные соединения в цепи полюсов должны иметь прочное соединение и надежный контакт. Сушку изоляции катушек полюсов производят в остове без их снятия. После сушки нагретые катушки и межкатушечные соединения окрашивают эмалью ГФ-92-ХС. Замеряют сопротивление изоляции катушек. Для демонтажа катушек компенсационной обмотки, выпеченных в остове, разъединяют их межкатушечные соединения. С помощью струбцин и кабеля подсоедините их к источнику постоянного тока. Включив источник тока, установите ток 600 - 700 А и греют катушки в течение 20 - 30 мин. Отключив источник тока, простукивают молотком все клинья, крепящие катушки. Внимают катушки из пазов полюса с помощью приспособления или рычагов, установив между катушкой и рычагом резиновые прокладки. При извлечении катушек из пазов принимают меры, исключающие повреждение корпусной изоляции катушек. Очистку пазов полюсов от покровной и пазовой изоляции, наплывов ком паунда и продуйте сухим сжатым воздухом. Демонтированные катушки испытывают переменным напряжением. На катушках, выдержавших испытательное напряжение, восстанавливают покровную изоляцию. Поврежденные катушки заменяются новыми. При пробое корпусной изоляции катушки, выпеченной в остове, производят ее срез от места пробоя на 50 - 60 мм в обе стороны, на месте пробоя снимите изоляцию до меди на участке длиной 20 мм. Срез изоляции выполняют с уклоном в сторону места пробоя. Место среза изоляции промазывают компаундом К-110 или ЭК-5 и наложите необходимое число слоев конусной изоляции согласно чертежу с промазкой каждого слоя вышеупомянутым компаундом. На прямолинейной части катушек накладывают один слой фторопластовой пленки, а затем слой стеклоленты. Если необходимо снять катушки главных полюсов, то предварительно вынимают из пазов все катушки компенсационной обмотки. Смену катушек дополнительных полюсов производят без демонтажа катушек компенсационной обмотки. Для этого отсоединяют выводы катушек дополнительного полюса и вынимают сердечник полюса вместе с катушкой в окно компенсационной катушки. Монтаж остова проводят в следующем порядке. Катушки главных и дополнительных полюсов укладывают на специальный стеллаж и с помощью струбцин и кабеля присоединяют катушки к источнику постоянного тока. Включив источник тока, устанавливают ток 900 А и греют катушки в течение 15 - 20 мин. Изоляцию катушек испытывают относительно корпуса и между витками. Перед укладкой катушек компенсационной обмотки проверяют пазы полюсов на отсутствие заусенцев, наплывов компаунда и при наличии устраняют. Пазы полюсов продувают сжатым воздухом. Промазывают компаундом К-110 или ЭК-5 место среза компенсационных катушек.

Ремонт подшипниковых щитов выполняют в следующем порядке. Снимают крышки и кольца. Выпрессовывают подшипники. При необходимости выпрессовывают крышку из подшипникового щита со стороны, противоположной коллектору. Выпрессовка подшипника из подшипникового щита может производиться различными способами, и на различных приспособлениях, приемлемых для депо, но в любом случае распрессовочное усилие должно быть сосредоточено на торцовую поверхность наружного кольца, а не на сепаратор или ролики. При выпрессовке подшипника вниз падать выпрессованный подшипник должен на прокладку или настил из мягкого неметаллического материала для исключения возможности забоин на наружной обойме подшипника. Промывают подшипники в бензине и тщательно осматривают их. Внимание обращают на качество клепки и износ сепаратора. Если радиальный зазор в подшипнике находится в пределах 0,14 - 0,28 мм, а состояние беговых дорожек, роликов и качество клепки сепаратора хорошее, собирают и смазывают подшипниковые узлы после полной просушки подшипников. Подшипниковые кольца снимают лишь при повреждениях подшипников или вала. Номера внутренних и наружных колец подшипников при сборке должны совпадать. Если обнаружены трещины деталей, на беговых дорожках или роликах появились раковины, задиры или шелушение, радиальные зазоры подшипника превышают установленные нормы, подшипник заменяют. Новые подшипники вплоть до момента их установки не рекомендуется вынимать из ящика. Антикоррозионное покрытие, нанесенное на поверхность новых подшипников, перед сборкой удаляют; подшипник тщательно промывают бензином, протирают чистой салфеткой и просушивают. Ролики и сепаратор перед сборкой покрывают смазкой. Подшипниковые щиты и особенно маслопроводящие трубки и дренажные отверстия тщательно промывают и продувают сжатым воздухом. Посадочную поверхность подшипниковых щитов осматривают на отсутствие трещин. Проверяют все резьбовые отверстия подшипниковых щитов. При необходимости резьбу восстанавливают. Перед сборкой маслопроводящие трубки заполняют смазкой. В процессе сборки следят, чтобы ни в смазке, ни в подшипниковых камерах не оказалось металлической пыли. Сборку подшипниковых щитов выполняют в следующем порядке. В подшипниковый щит со стороны, противоположной коллектору, запрессовывают крышку, если она была выпрессована. Устанавливают кольца и крышки. Заполняют подшипниковые камеры смазкой на 2/3 свободного объёма. Уплотняющие поверхности на деталях промазывают смазкой. При этом канавки на крышке и щите не должны заполняться и промазываться смазкой.

Снятую траверсу продувают сжатым воздухом, протирают салфеткой и устанавливают на специальное приспособление. Снимают щеткодержатели, кронштейны, шинный монтаж, корпус траверсы промойте керосином, просушивают и восстанавливают антикоррозионное покрытие красно-коричневой эмалью ГФ- 92-ХС. Осматривают кронштейны щеткодержателей, щеткодержатели, изоляционные пальцы, шинный монтаж, разжимное устройство. Поврежденные и изношенные детали заменяются. Щеткодержатели разбирают, очищают их от пыли и копоти. Проверяют состояние нажимных пальцев, резиновых амортизаторов, пружин, корпуса, окон щеткодержателя, резьбовых отверстий и отверстий под оси. Устраняют обнаруженные дефекты. Собрав щеткодержатели, смазывают все трущиеся поверхности смазкой ВНИИ НП-232. Проверяют усилие нажатия на каждый элемент щетки и вращение пальцев на оси при нормально натянутых пружинах. Пружины, потерявшие жесткость или просевшие заменяют. Собирают траверсу. Для обеспечения равномерного расположения щеткодержателей по окружности коллектора сборку траверсы с кронштейнами и щеткодержателями необходимо вести на специальном приспособлении. Монтируют щетки в окна щеткодержателей. Щетки должны быть без трещин и сколов, входить в окна щеткодержателей свободно, без заеданий. Зазоры между щетками и стенками окон должны быть в пределах норм, не более 0,1мм. Производят притирку щеток. Отремонтированную траверсу испытывают на электрическую прочность изоляции относительно корпуса.

При ремонте якоря, его устанавливают концами вала на специальные подставки, затем, вращая его, очищают вентиляционные каналы проволочным ершиком, а затем тщательно продувают каналы сжатым воздухом. Медленно вращая якорь, счищают с него от пыль, грязь и смазку. Осматривают бандажи, испытывают их на межвитковые замыкания, осуществляют замер сопротивления изоляции обмоток якоря относительно корпуса. Проверяют плотность посадки пазовых клиньев.

Если клинья в пазу ослабли на длине, больше 1/3 длины паза, они заменяются. Закрепляют ослабшие болты специальным ключом-трещоткой, предварительно нагрев якорь до температуры 160 - 170 °С. Для подтяжки коллекторных болтов якорь ставят на специальную подставку коллектором вверх. Болты подтягивают постепенно, с поочередным подвертыванием не более чем на пол-оборота диаметрально противоположных болтов. Визуальным осмотром убеждаются в качестве пайки обмотки якоря к петушкам коллектора. Обнаруженные дефекты устраняют. Просушивают якорь. Проводят обточку коллектора в собственных подшипниках, снимают фаски с продольных ребер коллекторных пластин. Удаляют остатки миканита у боков коллекторных пластин, вручную прочищают межламельное пространство. Прошлифовав коллектор, продувают его сжатым воздухом, испытывают якорь на междувитковое замыкание, а также замеряют сопротивление изоляции обмоток относительно корпуса. Восстанавливают покрытие якоря. Если сборка электродвигателя задерживается, то оберните рабочую поверхность коллектора плотной бумагой или закройте брезентовым чехлом. После этого якорь положите на деревянную подставку.

При сборке двигателя запрессовывают в остов щит со стороны, противоположной коллектору. Устанавливают в остов якорь и траверсу. Запрессовывают щит со стороны коллектора. Устанавливают двигатель в горизонтальное положение. Снимают крышки и кольца, замеряют торцовое биение подшипников, радиальный зазор между роликами и кольцом подшипника в холодном состоянии после посадки. Установив кольца, их насаживают на вал с нагревом кольца, подшипники закрывают крышками. Проверяют осевой разбег якоря, зазоры между петушками и корпусом щеткодержателя, расстояние между нижней кромкой щеткодержателя и рабочей поверхностью коллектора, перекос щеткодержателя по отношению к коллектору, которые должны быть в пределах норм. Установив траверсу в рабочее положение - ее закрепляют. Убеждаются в правильном расположении щеток на коллекторе. Производят работу тягового электродвигателя в режиме холостого хода, правильность расположения щеток на коллекторе и при необходимости устанавливают их на геометрическую нейтраль. По окончанию сборки тяговый электродвигатель подвергается испытаниям. Программа приемо-сдаточных испытаний машины постоянного тока включает в себя внешний осмотр машины, измерения сопротивления обмоток, испытания на нагревание в течение 1 ч, проверку частоты вращения и реверсирования при номинальных значениях напряжения, токов нагрузки и возбуждения для электродвигателей. При осмотре машины обращают внимание на состояние коллектора, установку щеткодержателей, разбег якоря, исправность щеточного аппарата и легкость вращения якоря. Коллектор не должен иметь пластин с острыми кромками, заусенцами и забоинами. Биение коллектора, контактных колец на нагретой машине допускается для электродвигателей и вспомогательных машин не более 0,04 мм.

Вывод: в данном разделе описаны методы ремонта тягового электродвигателя, а также последовательность ремонтных операций для его составных частей.

3. Оптимизация технологического процесса ремонта тягового электродвигателя ТЛ-2К1

.1 Эффективность адекватной оптимизации ремонтных операций

Для оптимизации ремонтного процесса численными методами необходимо оперировать наиболее важными и нормативными показателями, изменение которых в наибольшей степени влияет на изменение целевой функции. Целевая функция определяется критерием оптимизации, которая зависит от специфики работы ЭПС в рассматриваемом участке. В качестве критериев могут выбираться такие показатели как максимальная надежность ЭПС, минимальный простой в ремонте, максимальный эксплуатируемый парк, минимальные затраты в техническом содержании ЭПС и др. Оптимизировать технологический процесс ремонта можно путем уменьшения числа ремонтных операций, а именно соединением схожих процессов.

Существуют три способа оптимизации системы ремонта, которые направлены на определение таких значений параметров системы (объем ремонта и межремонтный пробег), которые в наибольшей степени соответствуют наилучшему процессу оптимизации.

В методе группирования определяются лимитирующие узлы, определяются ресурсы этих узлов. Группирование проводится в порядке возрастания ресурсов. Графоаналитический метод включает в себя определение зависимости затрат в ремонте функции межремонтного пробега, затрат в эксплуатации в функции межремонтного пробега, затрат в эксплуатации и ремонте в функции от межремонтного пробега. Данный метод длительно использовался в планово предупредительном виде ремонта.

Целью метода динамического программирования считается получение таких значений параметров ремонта, которые соответствуют экстремуму целевой функции оптимизации. Для тяговых электродвигателей и вспомогательных машин установлены плановые текущие ремонты в депо, средние и капитальные ремонты. Заводская последовательность указанных видов ремонта в одном цикле от начала эксплуатации или КР со следующего КР машина должна придерживаться установленной цепочки: КР-ТР-СР-ТР-КР. Для ТЭД: КР-ТО3-СР-ТР3-СР-ТО3-КР.

Понятие оптимизация включает в себя принципы и методы технического обслуживания и ремонта, вопросы концентрации, специализации, научной организации труда, а также вопросы внедрения поточных линий и механизированных рабочих мест, механизации и автоматизации производства, внедрения современных средств технической диагностики и других достижений научно-технического прогресса.

Использование принципа взаимозаменяемости и ремонтных градаций позволяет организовать заблаговременный ремонт не только отдельных деталей, но и целых узлов, таких, как колесно-моторный блок, тележки и другие, т. е. организовать крупноагрегатный метод ремонта.

Для этого локомотивные депо должны иметь переходящий технологический запас узлов и агрегатов.

Крупноагрегатный метод обеспечивает значительное сокращение продолжительности простоя э. п. с. в ремонте, повышение ритмичности производства, более равномерную загрузку оборудования, повышает производительность труда и качество ремонта, снижает его себестоимость. Для получения наибольшего эффекта от применения крупноагрегатного метода ремонта э. п. с. концентрируют в наиболее крупных и технически оснащенных депо.

Концентрация ремонта позволяет вести ремонт индустриальными методами, шире внедрять механизацию и автоматизацию производственных процессов. Высокая технико-экономическая эффективность ремонтного производства может быть обеспечена только при условии специализации ремонтных баз.

Специализация депо состоит в том, что в нем организуют ремонт электровозов и электропоездов определенных серий, а лучше всего одной серии.

Оптимальная организация ремонта обеспечивает рост производительности труда, снижение трудоемкости работ и стоимости единицы продукции, высокий уровень рентабельности и внедрение хозрасчета на предприятиях локомотивного хозяйства. Особое значение приобретает организация труда и, в частности, использование бригадной формы организации труда.

Технологическая подготовка производства включает в себя работы по проектированию и внедрению прогрессивной технологии ремонта и изготовления деталей.

Вывод: в данном разделе приведены примеры оптимизирования ремонтного процесса для облегчения трудоемкости ремонта и возможности сокращение времени технологического процесса.

4. Охрана труда

Охрана труда - система сохранения жизни и здоровья работников в процессе трудовой деятельности, включающая в себя правовые, социально-экономические, организационно - технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия.

Цель охраны труда - свести к минимуму вероятность поражения или заболевания работающего персонала при максимальной производительности труда.

Безопасные условия труда - условия труда, при которых воздействие на работающих вредных и (или) опасных производственных факторов исключено либо уровни их воздействия не превышают установленных нормативов. Человек подвергается воздействию опасностей в своей трудовой деятельности <#"654667.files/image018.gif">,

где b - добавочный процент рабочих на замещение (принять равным 10 %);

С i - Количество рабочих мест;

S - Число смен (принять равным 2); i - Норма обслуживания (n = 1).

Контингент ремонтных рабочих в цеху рассчитывается по нормативам:

норма времени на одну ремонтную единицу составляет на: текущий ремонт - 0,1 ч (производится еженедельно), осмотр - 0,85 ч, малый ремонт - 6,1 ч;

Структура ремонтного цикла для всего оборудования: К-О-О-М-О-О-М-О-О-С-О-О-М-О-О-М-О-О-К (К - капитальный ремонт; М - малый ремонт; С - средний ремонт; О - осмотр);

Количество ремонтных рабочих по содержанию оборудования определяется по формуле

,

где Т - трудоемкость ремонта и осмотров;

F - число часов, отработанных за год каждым рабочим (F = 1995 ч).

Трудоемкость ремонта определяется по формуле

Т = (а тр m тр + а 0 m 0 + а мр m мр)С i К i , нормо-час,

где а тр, а 0 ,а мр - соответственно норма времени на одну ремонтную единицу, на текущий ремонт, осмотр и малый ремонт, ч;

m тр, m 0 , m мр - количество соответственно текущих ремонтов, осмотров и малых ремонтов оборудования за год;

С i - количество принятого оборудования;

К i - коэффициент, учитывающий группу ремонтной сложности;

Фонд заработной платы планируют по каждой категории работников.

Ф,

где - численность работников, чел;

Среднемесячная заработная плана одного работника;

Число месяцев в году.

Среднемесячная заработная плата работников складывается из месячной тарифной ставки или оклада, доплат за вредные условия труда и премий. Доплату за вредные условия труда принимают в размере 12 % от тарифной ставки. Премии - 25 % заработка с учетом доплат за вредные условия труда.

Расчёт себестоимости ремонта двигателя

При расчете себестоимости продукции ремонта двигателей следует использовать следующие нормативы:

а) стоимость материалов и полуфабрикатов на единицу ремонта ТЛ2 К принять 550 руб.;

б) транспортно-заготовительные расходы - 5 % от стоимости материалов и полуфабрикатов;

Внепроизводственные расходы составляют 0,5 % от деповской себестоимости ремонта:

до ТЛ-2 К 5958,2×0,005 = 29,79 тыс. руб.

после ТЛ-2 К 6798,4×0,005 = 34 тыс. руб.

Итого полная деповская себестоимость годовой программы ремонта составляет:

до реконструкции цеха - 5988 тыс. руб.

после реконструкции цеха ТЛ-2 К - 6832,4 тыс. руб.

Полная деповская себестоимость ремонта одного двигателя составляет:

до реконструкции цеха - = 7,98 тыс. руб.

после реконструкции цеха- = 4,27 тыс. руб.

Заключение

В дипломном проекте описаны назначение, особенности конструкции, приведены характерные неисправности и методы их устранения, а также технологический процесс ремонта тягового электродвигателя ТЛ2К1. Рассмотрены возможности оптимизации трудоемкости ремонта и сокращение времени. В алгоритме ремонтного процесса представлена последовательность ремонта каждого узла или детали, возможность их замены или методов восстановления.

Список использованной литературы

. «Электровоз ВЛ11м. Руководство по эксплуатации»

Напряжение на зажимах двигателя... 1500 В

Ток часового режима........ 480 А

Мощность часового режима...... 670 кВт

Частота вращения часового режима 790 об/мин

Ток продолжительного режима..... 410 А

Мощность продолжительного режима 575 кВт

Частота вращения продолжительного режима 830 об/мин

Возбуждение последовательное

Класс изоляции по нагревостойкости обмотки якоря...... В

Класс изоляции по нагревостойкости полюсной системы..р

Наибольшая частота вращения при среднеизношенных бандажах 1690 об/мин

Подвешивание двигателя опорно-осевое

Передаточное число........ 88/23--3,826

Сопротивление обмоток главных полюсов при температуре 20 °С 0,025 Ом

Сопротивление обмоток дополнительных ПОЛЮСОВ и компенсационной обмотки при температуре 20 °С 0,0356

Сопротивление обмотки якоря при температуре 20 "С...0,0317 Ом

Система вентиляции........ независимая

Количество вентилирующего воздуха, не менее 95 м3/мин

К. п. д. в часовом режиме....... 0,931

К. п. д. в продолжительном режиме.... 0І930

Масса без шестерен....... 5000 кг

Сравнительный анализ двигателей ТЛ-2К1 и НБ-418К6

Наибольшее распространение в промышленности получили электрические двигатели двух видов: переменного тока НБ-418К6 и постоянного тока ТЛ-2К1 с различными способами возбуждения.

Двигатели, которые могут быть использованы в качестве тяговых на электровозе, должны удовлетворять как минимум двум требованиям. Прежде всего, они должны допускать возможность регулирования в широких пределах частоты вращения. Это позволяет изменять скорость движения поезда. Кроме того, необходимо иметь возможность регулировать в широком диапазоне силу тяги, т. е. вращающий момент, развиваемый двигателем. Так, двигатели электровоза должны обеспечивать значительную силу тяги во время трогания поезда, его разгона, при преодолении крутых подъемов и т. п. и снижать ее при более легких условиях движения.

С точки зрения организации движения, казалось бы, желательно, чтобы поезда независимо от изменения сопротивления движению перемещались с постоянной скоростью или эта скорость снижалась бы незначительно. В этом случае зависимость между силой тяги Р и скоростью движения и (рис. 4, а) представляла бы в прямоугольных осях координат вертикальную прямую линию 1, параллельную оси Р, или слегка наклонную линию 2. Зависимость между силой тяги, развиваемой двигателями локомотива, и скоростью его движения называют тяговой характеристикой и представляют ее графически, как показано на рис. 4, или в виде таблиц.

Рисунок 4. жесткая (а) и мягкая (б) тяговые характеристики

Изображенные на рис. 4, а тяговые характеристики являются жесткими. В случае жесткой характеристики мощность, потребляемая двигателями и равная произведению силы тяги на скорость, например, на крутых подъемах, возрастает пропорционально увеличению силы тяги. Резкое увеличение потребляемой мощности приводит к необходимости повышения мощности как самих двигателей, так и тяговых подстанций, увеличения площади сечения контактной подвески, что связано с затратами денежных средств и дефицитных материалов. Избежать этого можно, обеспечив характеристику двигателя, при которой с увеличением сопротивления движению поезда автоматически снижалась бы его скорость, т. е. так называемую мягкую характеристику (рис. 4, б). Она имеет вид кривой, называемой гиперболой. Двигатель с такой тяговой характеристикой работал бы при неизменной мощности. Однако при движении тяжелых составов на крутых подъемах, когда необходима большая сила тяги, поезда перемещались бы с очень низкой скоростью, тем самым резко ограничивая пропускную способность участка железной дороги. Примерно такой характеристикой обладают тепловозы, так как мощность их тяговых двигателей ограничена мощностью дизеля. Это относится и к паровой тяге, при которой мощность ограничивается производительностью котла.

Мощность, развиваемая тяговыми двигателями электровоза, практически не ограничена мощностью источника энергии. Ведь электровоз получает энергию через контактную сеть и тяговые подстанции от энергосистем, обычно обладающих мощностями, несоизмеримо большими мощности электровозов. Поэтому при создании электровозов стремятся получить характеристику, показанную на рис. 4, б штриховой линией. Электровоз, оборудованный двигателями с такой характеристикой, может развивать значительную силу тяги на крутых подъемах при сравнительно высокой скорости. Конечно, мощность, потребляемая тяговыми двигателями в условиях больших сил тяги, повышается, но это не приводит к резким перегрузкам питающей системы.

Двигатели ТЛ-2К1 самые распространенные. Достоинства их трудно переоценить: простота устройства и обслуживания, высокая надежность, низкая стоимость, несложный пуск. Однако, как известно, частота вращения асинхронного двигателя почти постоянна и мало зависит от нагрузки, она определяется частотой подводимого тока и числом пар полюсов двигателя. Поэтому регулировать частоту вращения таких двигателей, а, следовательно, и скорость движения поездов можно только изменением частоты питающего тока и числа пар полюсов, что трудно осуществить. Кроме того, как уже отмечалось выше, для питания таких двигателей требуется устраивать сложную контактную сеть.

Благодаря развитию полупроводниковой техники оказалось возможным создать преобразователи однофазного переменного тока в переменный трехфазный и регулировать их частоту.

В какой же степени отвечают требованиям, предъявляемым к тяговым двигателям, электрические машины постоянного тока? Напомним, что эти машины -- генераторы и двигатели -- различаются по способу возбуждения.

Обмотка возбуждения может быть включена параллельно обмотке якоря (рис. 5, а) и последовательно с ней (рис5, б). Такие двигатели называют соответственно двигателями параллельного и последовательного возбуждения. Используют также двигатели, у которых имеются две обмотки возбуждения -- параллельная и последовательная. Их называют двигателями смешанного возбуждения (рис. 5, в). Если обмотки возбуждения включены согласно, т. е. создаваемые ими магнитные потоки складываются, то такие двигатели называют двигателями согласного возбуждения; если потоки вычитаются, то имеем двигатели встречного возбуждения. Применяют и независимое возбуждение: обмотка возбуждения питается от автономного (независимого) источника энергии (рис. 5, г).

Рисунок 5. Схемы, проясняющие способы возбуждения двигателей постоянного тока


Чтобы оценить возможности регулирования частоты вращения двигателя постоянного тока, напомним, что при вращении в магнитном поле проводников обмотки якоря двигателя в них возникает (индуцируется) электродвижущая сила (э. д. с). Направление ее определяют, пользуясь известным правилом правой руки. При этом ток, проходящий по проводникам якоря от источника энергии, направлен встречно индуцируемой э. д. с. Напряжение, подведенное к двигателю, уравновешивается э. д. с, наводимой в обмотке якоря, и падением напряжения в обмотках двигателя.

Значение э. д. с. пропорционально магнитному потоку и частоте вращения, с которой проводники пересекают магнитные силовые линии. Поэтому без ощутимой ошибки можно считать, порциональность) или магнитный поток возбуждения (обратная пропорциональность).

Как зависит вращающий момент от тока якоря? Если подключить проводники обмотки якоря двигателя к электрической сети, то проходящий по ним ток, взаимодействуя с магнитным полем полюсов, создаст силы, действующие на каждый проводник с током. В результате совместного действия этих сил создается вращающий момент М, пропорциональный току якоря и магнитному потоку полюсов.

Чтобы построить тяговую характеристику двигателя постоянного тока, необходимо установить, как изменяются частота вращения п и момент М в зависимости от тока при разных способах возбуждения двигателей.

Для двигателей с параллельным возбуждением можно считать, что ток возбуждения не изменяется с изменением нагрузки.

Примерно такие же характеристики будут иметь двигатели с независимым возбуждением, если не изменяется ток возбуждения.

Рассмотрим те же характеристики для двигателя с последовательным возбуждением (см. рис. 5, б). У такого двигателя магнитный поток зависит от нагрузки, так как по обмотке возбуждения проходит ток якоря. Частота вращения якоря обратно пропорциональна потоку и при увеличении тока якоря, а значит и магнитного потока, резко уменьшается (рис. 6, б). Вращающий момент двигателя, наоборот, резко возрастает, так как одновременно увеличиваются ток якоря и зависящий от него магнитный поток возбуждения.

В действительности магнитный поток немного уменьшается вследствие размагничивающего действия реакции якоря. В случае небольших нагрузок магнитный поток возрастает пропорционально току, а вращающий момент, пропорционально квадрату тока якоря.

Рисунок 6. Электромеханические характеристики двигателей с параллельным (а) и последовательным (б) возбуждением

Если нагрузка увеличивается значительно, ток двигателя возрастет до такой степени, что наступит насыщение его магнитной системы. Это приведет к тому, что частота вращения будет снижаться уже в меньшей степени. Но тогда начнет более интенсивно возрастать ток, а значит, и потребляемая из сети мощность. При этом скорость движения поезда несколько стабилизируется. Зависимости частоты вращения якоря, вращающего момента и коэффициента полезного действия) от потребляемого двигателем тока называют электромеханическими характеристиками на валу тягового двигателя при неизменном напряжении, подводимом к тяговому двигателю, и постоянной температуре обмоток 115°С (по ГОСТ 2582--81).

По электромеханическим характеристикам двигателя можно построить его тяговую характеристику. Для этого берут ряд значений тока и определяют по характеристикам соответствующие им частоту вращения и вращающий момент. По частоте вращения двигателя несложно подсчитать скорость движения поезда, так как известны передаточное число редуктора и диаметр круга катания колесной пары.

Поскольку в теории тяги пользуются размерностью частоты вращения якоря тягового электродвигателя, выраженной в об/мин, а скорость движения поезда измеряют в км/ч.

Зная вращающий момент на валу двигателя, а также потери при передаче момента от вала тягового двигателя к колесной паре, которые характеризуют к. п. д. передачи, можно получить и силу тяги, развиваемую одной, а затем и всеми колесными парами электровоза.

По полученным данным строят тяговую характеристику (см. рис. 4). На электрических железных дорогах в качестве тяговых в подавляющем большинстве случаев используют двигатели постоянного тока с последовательным возбуждением НБ418К6, обладающие мягкой тяговой характеристикой. Такие двигатели, как отмечалось выше, при больших нагрузках вследствие снижения скорости потребляют меньшую мощность из системы электроснабжения.

Тяговые двигатели последовательного возбуждения НБ418К6 имеют и другие преимущества по сравнению с двигателями параллельного возбуждения ТЛ-2К1. В частности, при постройке тяговых двигателей устанавливают допуски на точность изготовления, на химический состав материалов для двигателей и т. п. Создать двигатели с абсолютно одинаковыми характеристиками практически невозможно. Вследствие различия характеристик тяговые двигатели, установленные на одном электровозе, при работе воспринимают неравные нагрузки. Более равномерно нагрузки распределяются между двигателями последовательного возбуждения, так как они имеют мягкую тяговую характеристику.

Однако, двигатели последовательного возбуждения НБ418К6 имеют и весьма существенный недостаток -- электровозы с такими двигателями склонны к боксованию, иногда переходящему в разносное. Этот недостаток особенно резко проявился после того, когда масса поезда стала ограничиваться расчетным коэффициентом сцепления. Жесткая характеристика в значительно большей мере способствует прекращению боксования, так как в этом случае сила тяги резко снижается даже при небольшом скольжении и имеется больше шансов на восстановление сцепления. К недостаткам тяговых двигателей последовательного возбуждения НБ418К6 относится и то, что они не могут автоматически переходить в режим электрического торможения: для этого необходимо предварительно изменить способ возбуждения тягового двигателя.

Тяговый электродвигатель «ТЛ-2К»

Курсовая

Производство и промышленные технологии

Назначение тягового двигателя ТЛ-2К Принцип работы тягового электродвигателя ТЛ-2К Основные неисправности и причины их возникновения Методы диагностирования Обзор и описания методов диагностирования Способы очистки тягового электродвигателя Диагностика тягового электродвигателя...


Введение

Тяговый электродвигатель «ТЛ-2К» установлен на электровозы серии ВЛ, предназначен для индивидуального привода колёсной пары. Крутящий момент передаётся на ось посредством шарнирной муфты. Двигатели постоянного тока с последовательным возбуждением, 6-полюсные с добавочными полюсами. Двигатели имеют независимую вентиляцию. Тяговые электродвигатели преобразуют поступающую из контактной сети электрическую энергию в механическую работу, затрачиваемую на преодоление всех сил сопротивления движению поезда и силы его инерции при ускоренном движении.

Модель тягового электродвигателя постоянного тока электрического подвижного состава как объекта диагностирования включает в себя электроизоляционную конструкцию, коллекторно-щеточный аппарат и механическую часть. Поэтому отказы тяговых двигателей имеют различную природу и могут происходить вследствие:

– пробоя изоляции и межвитковых замыканий обмоток якоря;

– пробоя изоляции и межвитковых замыканий обмоток главных и дополнительных полюсов;

– пробоя изоляции компенсационной обмотки;

– повреждений выводов катушек полюсов;

– повреждений выводных кабелей, выплавления припоя из петушков коллектора;

– разрушения якорных бандажей;

– повреждения якорных подшипников;

– повреждения пальцев, кронштейнов и щеткодержателей;

– кругового огня по коллектору.

Необходимо отметить, что для определения неисправностей тяговых двигателей электровозов и электропоездов можно использовать одинаковые подходы.

Определению неисправностей в электрических машинах посвящено значительное количество публикаций в периодической печати, имеются научные монографии и патенты.

В последние годы активно внедряется методология диагностирования зарождающихся дефектов роторных узлов, в т.ч. и подшипников. Использование системы диагностирования, ориентированной на обнаружение зарождающихся дефектов и прогнозирование оптимальных сроков проведения технических обслуживаний, позволяет обеспечить максимально возможный экономический эффект за счет снижения трудозатрат, расхода запасных частей и простоев подвижного состава.


Глава I . Назначение и работа тягового электродвигателя ТЛ-2К

1.1 Назначение тягового двигателя ТЛ-2К

На электровозе ВЛ10 установлены восемь тяговых электродвигателей типа ТЛ2К. Тяговый электродвигатель постоянного тока ТЛ2К предназначен для преобразования электрической энергии, получаемой из контактной сети, в механическую. Вращающий момент с вала якоря электродвигателя передается на колесную пару через двустороннюю одноступенчатую цилиндрическую косозубую передачу. При такой передаче подшипники двигателя не получают добавочных нагрузок по аксиальному направлению. Подвеска электродвигателя опорно-осевая. Электродвигатель с одной стороны опирается моторно-осевыми подшипниками на ось колесной пары электровоза, а с другой на раму тележки через шарнирную подвеску и резиновые шайбы. Система вентиляции независимая, с подачей вентилирующего воздуха сверху в коллекторную камеру и выбросом сверху с противоположной стороны вдоль оси двигателя. Электрические машины обладают свойством обратимости, заключающимся в том, что одна и та же машина может работать как двигатель и как генератор. Благодаря этому тяговые электродвигатели используют не только для тяги, но и для электрического торможения поездов. При таком торможении тяговые двигатели переводят в генераторный режим, а вырабатываемую ими за счет кинетической или потенциальной энергии поезда электрическую энергию гасят в установленных на электровозах резисторах (реостатное торможение) или отдают в контактную сеть (рекуперативное торможение).

Все тяговые двигатели постоянного тока вагонов метрополитена имеют в основном одинаковое устройство. Двигатель состоит из остова, четырех главных и четырех добавочных полюсов, якоря, подшипниковых щитов, щеточного аппарата, вентилятора.

Остов двигателя

Он выполнен из электромагнитной стали имеет цилиндрическую форму и служит магнитопроводом. Для жесткого крепления к поперечной балке рамы тележки на остов предусмотрены три прилива-кронштейна и два предохранительных ребра. В остове имеются отверстия для крепления главных и добавочных полюсов, вентиляционные и коллекторные люки. Из остова двигателя выходят шесть кабелей. Торцовые части остова закрыты подшипниковыми щитами. В остове укреплена паспортная табличка с указанием завода-изготовителя, заводского номера, массы, тока, частоты вращения, мощности и напряжения.

Главные полюса

Рис.1. Тяговый двигатель ДК-117 в разрезе

Они предназначены для создания основного магнитного потока. Главный полюс состоит из сердечника и катушки. Катушки всех главных полюсов соединены последовательно и составляют обмотку возбуждения. Сердечник набран из листов электротехнической стали толщиной 1,5 мм для Уменьшения вихревых токов. Перед сборкой листы прокрашивают изоляционным лаком, сжимают прессом и скрепляют заклепками. Часть сердечника, обращенная к якорю, выполнена более широкой и называется полюсным наконечником. Эта часть служит для поддержания катушки, а также для лучшего распределения магнитного потока в воздушном зазоре. В тяговых двигателях ДК-108А, установленных на вагонах Е (по сравнению с ДК-104 на вагонах Д ), увеличен зазор между якорем и главными полюсами, что, с одной стороны, дало возможность увеличить скорость в ходовых режимах на 26 %, а с другой стороны, уменьшилась эффективность э лектрического торможения (медленное возбуждение двигателей в генераторном режиме из-за недостаточного магнитного потока). Для увеличения эффективности электрического торможения в катушках главных полюсов кроме двух основных обмоток, создающих основной магнитный поток в тяговом и тормозном режимах, имеется третья — подмагничивающая, которая создает дополнительный магнитный поток при работе двигателя только в генераторном режиме. Подмагничивающая обмотка включена параллельно двум основным и получает питание от высоковольтной цепи через автоматический выключатель, предохранитель и контактор. Изоляция катушек главных полюсов кремнийорганическая. Главный полюс крепится к остову двумя болтами, которые ввертывают в квадратный стержень, расположенный в теле сердечника.

Добавочные полюса

Они предназначены для создания дополнительного магнитного потока, который улучшает коммутацию и уменьшает реакцию якоря в зоне между главными полюсами. По размерам они меньше главных полюсов и расположены между ними. Добавочный полюс состоит из сердечника и катушки. Сердечник выполнен монолитным, так как вихревые токи в его наконечнике не возникают из-за небольшой индукции под добавочным полюсом. Крепится сердечник к остову двумя болтами. Между остовом и сердечником для меньшего рассеяния магнитного потока установлена диамагнитная латунная прокладка. Катушки добавочных полюсов соединены последовательно одна с другой и с обмоткой якоря.

Якорь

Рис.2. Тяговый двигатель ДК-108 в разрезе

Машина постоянного тока имеет якорь, состоящий из сердечника, обмотки, коллектора и вала. Сердечник якоря представляет собой цилиндр, набранный из штампованных листов электротехнической стали толщиной 0,5 мм. Для уменьшения потерь от вихревых токов, возникающих при пересечении якорем магнитного поля, листы изолируют один от другого лаком. В каждом листе имеется отверстие со шпоночной канавкой для насадки на вал, вентиляционные отверстия и пазы для укладки обмотки якоря. В верхней части пазы имеют форму ласточкиного хвоста. Листы насаживают на вал и фиксируют шпонкой. Собранные листы прессуются между двумя нажимными шайбами. Обмотка якоря состоит из секций, которые укладывают в пазы сердечника и пропитывают асфальтовым и бакелитовым лаками. Чтобы обмотка не выпадала из пазов, в пазовую часть забивают текстолитовые клинья, а переднюю и заднюю части обмотки укрепляют проволочными бандажами, которые после намотки пропаивают оловом. Назначение коллектора машины постоянного тока в различных режимах работы неодинаково. Так, в генераторном режиме коллектор служит для преобразования переменной электродвижущей силы (э.д.с), индуцируемой в обмотке якоря, в постоянную э.д.с. на щетках генератора, в двигательном — для изменения направления тока в проводниках обмотки якоря, чтобы якорь двигателя вращался в какую-либо определенную сторону. Коллектор состоит из втулки, коллекторных медных пластин, нажимного конуса. Коллекторные пластины изолированы друг от друга миканитовыми пластинами, от втулки и нажимного конуса — изоляционными манжетами. Рабочую часть коллектора, имеющую контакт со щетками, протачивают на станке и шлифуют. Чтобы при работе щетки не касались миканитовых пластин, коллектор подвергают «продорожке». При этом миканитовые пластины становятся ниже коллекторных примерно на 1 мм. Со стороны сердечника в коллекторных пластинах предусмотрены выступы с прорезью для впаивания проводников обмотки якоря. Коллекторные пластины имеют клинообразное сечение, а для удобства крепления — форму «ласточкин хвост». Коллектор насаживают на вал якоря прессовой посадкой и фиксируют шпонкой. Вал якоря имеет разные посадочные диаметры. Кроме якоря и коллектора, на вал напрессована стальная втулка вентилятора. Внутренние кольца подшипников и подшипниковые втулки насажены на вал в горячем состоянии.

Подшипниковые щиты

В щитах установлены шариковые или роликовые подшипники — надежные и не требующие большого ухода. Со стороны коллектора стоит упорный подшипник; его наружное кольцо упирается в прилив подшипникового щита. Со стороны тяговой передачи установлен свободный подшипник, который позволяет валу якоря удлиняться при нагреве. Для подшипников применяют густую консистентную смазку. Чтобы смазка при работе двигателей не выбрасывалась из смазочных камер, предусмотрено гидравлическое (лабиринтное) уплотнение. Вязкая смазка, попав в небольшой зазор между канавками-лабич рингами, проточенными в щите, и втулкой, насаженной на вал, под действием центробежной силы отбрасывается к стенкам лабиринта, где самой смазкой создаются гидравлические перегородки. Подшипниковые щиты крепят к обеим сторонам остова.

Щеточный аппарат

Для соединения коллектора двигателя с силовой цепью вагона используют электрографитные щетки марки ЭГ-2А, которые обладают хорошими коммутирующими свойствами, высокой механической прочностью и способны выдерживать большие перегрузки. Щетки представляют собой прямоугольные призмы размером 16 х 32 х 40 мм. Рабочую поверхность щеток пришлифовывают к коллектору для обеспечения надежного контакта. Щетки устанавливают в обоймы, называемые щеткодержателями, и соединяют с ними гибкими медными шунтами: в каждом щеткодержателе по две щетки, число щеткодержателей — четыре. Нажим на щетку осуществляется пружиной, упирающейся одним концом через палец в щетку, другим — в щеткодержатель. Нажатие на щетку должно быть отрегулировано в строго определенных пределах, так как чрезмерный нажим вызывает быстрый износ щетки и нагрев коллектора, а недостаточный не обеспечивает надежного контакта между щеткой и коллектором, вследствие чего возникает искрение под щеткой. Нажатие не должно превышать 25Н (2,5 кгс) и быть менее 15Н (1,5 кгс). Щеткодержатель укрепляют на кронштейне и с помощью двух шпилек, запрессованных в кронштейн, крепят непосредственно к подшипниковому щиту. Кронштейн от щеткодержателя и подшипникового шита изолируют фарфоровыми изоляторами. Для осмотра коллектора и щеткодержателей в остове двигателя имеются люки с крышками, обеспечивающими достаточную защиту от проникновения воды и грязи.

Вентилятор

В процессе работы необходимо охлаждать двигатель, так как с повышением температуры его обмоток снижается мощность двигателя. Вентилятор состоит из стальной втулки и силуминовой крыльчатки, скрепленных восемью заклепками. Лопатки крыльчатки расположены радиально для выброса воздуха в одном направлении. Вентилятор вращается вместе с якорем двигателя, создавая в нем разрежение. Потоки воздуха засасываются внутрь двигателя через отверстия со стороны коллектора. Часть воздушного потока омывает якорь, главные и добавочные полюса, другая проходит внутри коллектора и якоря по вентиляционным каналам. Воздух выталкивается наружу со стороны вентилятора через люк остова.

1.2 Принцип работы тягового электродвигателя ТЛ-2К

При прохождении тока по проводнику, расположенному в магнитном поле, возникает сила электромагнитного взаимодействия, стремящаяся перемещать проводник в направлении, перпендикулярном проводнику и магнитным силовым линиям. Проводники обмотки якоря в определенном порядке присоединены к коллекторным пластинам. На внешней поверхности коллектора установлены щетки положительной (+) и отрицательной (-) полярностей, которые при включении двигателя соединяют коллектор с источником тока. Таким образом, через коллектор и щетки получает питание током обмотка якоря двигателя. Коллектор обеспечивает такое распределение тока в обмотке якоря, при котором ток в проводниках, находящийся в любое мгновение времени под полюсами одной полярности, имеет одно направление, а в проводниках, находящихся под полюсами другой полярности - противоположное.

Катушки возбуждения и обмотка якоря могут получать питание от разных источников тока, т. е тяговый двигатель будет иметь независимое возбуждение. Обмотка якоря и катушки возбуждения могут быть соединены параллельно и получать питание от одного и того же источника тока, т.е тяговый двигатель будет иметь параллельное возбуждение. Обмотка якоря и катушки возбуждения могут быть соединены последовательно и получать питание от одного источника тока, т.е тяговый двигатель будет иметь последовательное возбуждение. Сложным требованием эксплуатации наиболее полно удовлетворяют двигатели с последовательным возбуждением, поэтому их применяют на электровозах.

1.3 Основные неисправности и причины их возникновения

Неисправности тягового электродвигателя:

  1. круговой огонь по коллектору или чрезмерное искрение под щетками, подгар коллектора;
  2. потеки смазки внутри тягового двигателя;
  3. перегрев подшипника;
  4. перекрытие или пробой кронштейна щеткодержателя;
  5. пробой изоляции обмоток якорей и полюсов;
  6. сильное искрение под щетками и срабатывание токовой защиты;
  7. чрезмерное нагревание коллектора;
  8. чрезмерное нагревание якоря;
  9. порванные сетки в вентиляционных отверстиях или торчащие из них остатки бандажей;
  10. На моторном вагоне срабатывает быстродействующий выключатель во время первой поездки после замены двигателя.

Причины их возникновения :

  1. щетки плохо притерты к коллекторным пластинам, неплотное прилегание. Изоляция между коллекторными пластинами выступает над ними, коллектор плохо прошлифован. Недопустимый износ щеток, недостаточное или неравномерное нажатие щеток. Биение коллектора, низкое качество щеток, коллектора и изоляторов. Оборван проводник обмотки якоря, короткое замыкание в обмотке дополнительных полюсов. Заклинивание щетки, коллектор загрязнен, межвитковое замыкание или выпаивание секции обмотки якоря из петушков коллектора;
  2. избыток смазки, перекос подшипника;
  3. недостаточно смазки, повреждение подшипника;
  4. попадание влаги в тяговый двигатель, перенапряжение, грязный изолятор или кронштейн щеткодержателя;
  5. механические повреждения, резкое снижение сопротивления изоляции при частых перенапряжениях на двигателях, попадании влаги, пыли и т.д;
  6. механическое повреждение изоляции, старение изоляции, снижение изоляционных свойств, вследствие частых перенапряжений;
  7. щетки слишком сильно прижаты к коллекторным пластинам;
  8. замыкание между секциями обмоток якоря или коллекторными пластинами;
  9. размотаны бандажи якоря и часть обломков отброшена в сторону вентиляционных отверстий;
  10. неправильный монтаж проводов.

Способ устранения неполадок тягового электродвигателя:

  1. приработать щетки к коллекторным пластинам при малых скоростях движения, продорожить зачистить и отшлифовать коллектор. Заменить щетки, отрегулировать нажатие щеток, проточить и отшлифовать коллектор. Заменить щетки, изоляторы, отремонтировать обмотку в деповских условиях, отыскать поврежденную катушку дополнительного полюса и заменить её (в депо). Обеспечить свободный ход щетки, очистить коллектор, отремонтировать якорь в деповских условиях;
  2. снять потеки и наблюдать за подшипниковым узлом. Если повреждение повториться, снять тяговый двигатель с тележки, разобрать подшипниковый узел и заменить подшипник. Устранить перекос, подтянув болты крышки подшипника;
  3. добавить смазку. Снять тяговый двигатель с тележки, разобрать подшипниковый узел, заменить подшипник и смазку;
  4. протереть тяговый двигатель чистой салфеткой, смоченной бензином, заменить изолятор или кронштейн щеткодержателя;
  5. устранить повреждения в депо;
  6. отключить тяговый двигатель, по прибытии в депо устранить повреждение;
  7. установить нормальное нажатие щеток;
  8. отключить тяговый двигатель, по прибытии в депо отремонтировать якорь;
  9. отключить тяговый двигатель, по прибытии в депо отремонтировать;
  10. пересоединить концы тягового двигателя.


Глава II . Методы диагностирования

2.1 Обзор и описания методов диагностирования

Для диагностирования тяговых электродвигателей используются основные методы диагностирования: неразрушающий контроль и разрушающий контроль.

Неразрушающий контроль включает в себя: электрический, вихретоковый, тепловой, радиоволновой, ультразвуковой методы, виброакустический.

Неразрушающий контроль – последняя и в ряде случаев единственно возможная технологическая операция, позволяющая выявлять недопустимые дефекты в технических объектах и тем самым предотвращать возникновение чрезвычайных ситуаций на железнодорожном транспорте.

Техническая диагностика – область знаний, охватывающая теорию, методы и средства определения технического состояния объектов.

Техническое диагностирование - процесс установления технического состояния объекта с указанием места, вида и причин возникновения дефектов и повреждений.

Надёжностью является наиболее полной оценкой качества объектов (изделий). Под надёжностью понимают свойство объекта (изделия) сохранять во времени в установленных пределах значения всех параметров, Характеризующих способность его выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортирования. Надёжность - сложное свойство, состоящее из сочетания таких свойств, как безотказность, долговечность, ремонтопригодность и сохраняемость.

Безотказность - это свойство объекта (изделия) непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.

Долговечность - свойство объекта (изделия) сохранять работоспособное состояние до наступления предельного состояния при - установленной системе технического обслуживания и ремонта.

Ремонтопригодность - свойство объекта (изделия), заключающееся в приспособленности к предупреждению и обнаружению причин возникновения отказов и повреждений, а также поддержанию и восстановлению работоспособного состояния путём проведения технического обслуживания и ремонтов.

Ультразвуковая дефектоскопия

Ультразвуковой контроль основан на способности ультразвуковых волн проникать в металл на большую глубину и отражаться от находящихся в нем дефектных участков. В процессе контроля пучок ультразвуковых колебаний от вибрирующей пластины вводится в контролируемый шов. При встрече с дефектным участком ультразвуковая волна отражается от него и улавливается другой пластиной, которая преобразует ультразвуковые колебания в электрические. Эти колебания после усиления подаются на экран электронно-лучевой трубки дефектоскопа, свидетельствуя в виде импульса о наличии дефектов. При контроле щуп перемещают вдоль шва, прозвучивая таким образом различные по глубине зоны шва. По характеру импульсов судят о протяженности дефектов и глубине их залегания.

К преимуществам ультразвуковой дефектоскопии относятся: возможность обнаружения внутренних дефектов, большая проникающая способность, высокая чувствительность, возможность определения места и размера дефекта. Вместе с тем, метод имеет ряд отрицательных особенностей. К ним относится необходимость специальных методик контроля отдельных типов изделий, высокой чистоты поверхности детали в месте контроля, что особенно затрудняет дефектоскопию наплавленных поверхностей. Поэтому указанным методом контролируются детали, для которых разработаны необходимые технологии, регламентирующие зоны и чувствительность контроля; места ввода ультразвуковых волн в изделие; тип дефектоскопа; тип искательной головки.

Вихретоковая дефектоскопия

Метод вихретоковой дефектоскопии дает возможность обнаружения поверхностных и подповерхностных дефектов. Он основан на использовании действия вихревых токов, возникающих в поверхностном слое контролируемой детали от пронизывания его магнитным потоком, на первичную или особую измерительную катушку.

Сущность метода состоит в следующем. Если к контролируемой поверхности приблизить катушку, по которой протекает переменный ток, то в металле возникнут замкнутые вихревые токи. Величина этих токов зависит от частоты возбуждающего тока, электропроводности и магнитной проницаемости материала изделия, относительного расположения катушки и детали, от наличия на поверхности дефектов типа нарушения сплошности. Магнитное поле вихревых токов направлено против основного магнитного потока и несколько гасит его, что может быть измерено величиной полного сопротивления генерирующей катушки. В случае изменения вихревых токов, изменяется и полное сопротивление. Изменение величины вихревых токов может быть обнаружено с помощью другой (измерительной) катушки.

Виброакустический метод

Виброакустическая метод - это наиболее эффективный из известных методов технической диагностики двигателей. Метод позволяет на работающем двигателе вести обнаружение ключевых дефектов, определяющих его надежность и ресурс, проводить локацию местоположения дефектов, контролировать и управлять их развитием.

2.2 Способы очистки тягового электродвигателя

Предварительно двигатель очищают снаружи вручную с помощью скребков и ветоши. Для окончательной очистки двигатель обмывают в специальных моечных (одно- или двухкамерных) машинах.

Двухкамерная моечная машина состоит из двух герметически закрывающихся камер. В камере двигатель обмывают горячей (80— 90 °С) водой, которую насосом подают во вращающееся, от привода душевое устройство. Чтобы внутрь двигателя не попала влага, все вентиляционные и другие отверстия в остове тщательно закрывают специальными заглушками и крышками, а на место крышки верхнего коллекторного люка прикрепляют специальный патрубок, через который в двигатель подают от вентилятора воздух, создавая внутри него избыточное давление. После обмывки поднимают промежуточную дверь и перемещают двигатель на самоходной тележке в камеру 2, где при закрытой двери в течение 15—20 мин сушат его потоком нагретого от калорифера воздуха.

Частота вращения душевого и сушильного устройств 2 об/мин. Обе камеры могут работать одновременно.

Очищенную машину устанавливают на позицию для осмотра, где ее тщательно осматривают

Осмотр по выявлению внешних дефектов осуществляют визуально. Одновременно сверяют номера остова, подшипниковых щитов и шапок моторно-осевых подшипников.

Затем измеряют электрические параметры машины, определяют осевой разбег якоря, биение и износ коллектора, радиальные зазоры якорных подшипников и биение наружных колец.

Для выполнения перечисленных измерений ремонтная позиция оснащена необходимыми измерительными приборами, статическим преобразователем с колонкой выводов и индукционным нагревателем для снятия внутренних колец подшипников и лабиринтных колец.

Сопротивление изоляции тяговых двигателей измеряют мегаомметром на 2,5 кВ. (Для исключения дополнительной погрешности сопротивление изоляции следует измерять мегаомметрами на соответствующее напряжение.)

При измерении сопротивления изоляции соединяют начало (или конец) цепи главных полюсов с началом (или концом) другой цепи — добавочных полюсов и якорной обмотки. К этим выводам подсоединяют зажим «Л» мегаомметра. Второй его зажим «3» соединяют с корпусом машины. В процессе измерения необходимо следить, чтобы выводные концы контролируемых обмоток не касались пола или корпуса двигателя, в противном случае показания прибора будут неправильными. У исправных тяговых двигателей сопротивление изоляции должно быть не менее 5 МОм. Если оно окажется меньше, следует измерить сопротивление отдельных цепей (главных и добавочных полюсов, обмоток якоря) и выявить поврежденное место, имея в виду, что снижение сопротивления могло быть вызвано увлажнением или неисправностью кронштейнов, межкатушечных соединений.

Сопротивление изоляции измеряют до обмывки двигателя.

Сопротивление изоляции вспомогательных машин должно быть не менее 3 МОм. Способы проверки и выявления дефектных мест в изоляции для вспомогательных машин те же, что и для тяговых двигателей.

Активное сопротивление обмоток электрических машин измеряют обычно мостом МД6 (или УМ13) и сравнивают с установленным для машины данного типа значением. Увеличение активного сопротивления может быть вызвано дефектами в полюсных катушках, выплавлением кабелей в патронах или наконечниках, обрывом жил выводных кабелей или межкатушечных соединений и нарушением контакта в этих соединениях.

Для выявления причины увеличения сопротивления подозреваемую обмотку машины подключают к статическому преобразователю и устанавливают в ней ток, равный удвоенному значению ее тока часового режима. Дефектное место выявляют на ощупь по повышенному нагреву.

Затем при вращении двигателя под напряжением 220—400 В без нагрузки проверяют работу якорных подшипников, вибрацию двигателя, биений коллектора и работу щеточного аппарата.

Якорные подшипники проверяют по их нагреву и на слух при вращении якоря двигателя с частотой около 700—750 об/мин в течение 5—10 мин в каждую сторону. Исправный подшипник должен работать без треска, щелчков, заеданий и в режиме холостого хода машины не перегреваться относительно температуры окружающей среды более чем на 10 °С.

Вибрацию двигателя проверяют также при его работе на холостом ходу при частоте вращения 700 об/мин. Измеряют вибрацию ручным вибрографом ВР-1. Место приложения вибрографа к корпусу двигателя может быть любым. Если вибрация двигателя окажется более 0,15 мм, якорь необходимо балансировать.

Биение коллектора измеряют индикаторов, который подводят к коллектору через коллекторный люк и закрепляют струбциной на кромке остова. Биение замеряют по средней части рабочей длины коллектора и на расстоянии 10-20 мм от его наружного среза. Если оно превысит предельно допустимое значение, то коллектор подлежит обточке.

Биение коллектора можно измерять и с помощью приспособления, корпус которого закрепляют на кронштейне щеткодержателя. Переместив ползунок на рабочую часть коллектора, устанавливают индикатор на нуль и при вращении коллектора определяют биение.

Выработку (износ) рабочей части коллектора можно измерить, также используя это приспособление. Для этого ползунок вначале отводят на нерабочую часть коллектора, устанавливают индикатор на нуль, а затем при неподвижном коллекторе перемещают ползунок по всей рабочей части коллектора и фиксируют по индикатору наибольшее значение выработки.

При отсутствии описанного приспособления выработку можно измерить шаблоном или щупом и линейкой.

Шаблон устанавливают на коллектор и удерживают рукой так, чтобы колодка приспособления располагалась строго параллельно коллекторным пластинам, а ее торец совпадал с концом коллектора. Вращая поочередно головки микрометров, определяют выработку в двух точках по длине коллектора.

Для определения выработки щупом и линейкой, линейку устанавливают узким ребром на коллекторную пластину и щупом по всей ее длине измеряют зазор между нижней кромкой линейки и рабочей поверхностью пластины. Такие замеры делают в нескольких местах по окружности коллектора.

Коммутацию машины оценивают по степени искрения под щетками. Если при визуальной оценке искрение под щетками окажется более 1.5 балла, а у щеточно-коллекторного узла дефектов выявлено не будет, то необходима тщательная проверка магнитной системы машины, ее отдельных узлов и настройка коммутации.

Радиальные зазоры якорных подшипников проверяют пластинчатыми щупами на неподвижной машине. Для этого снимают наружные крышки и лабиринтные кольца подшипников щитов и проверяют щупом зазор между роликом и внутренним кольцом подшипника в его нижней части. Для тяговых двигателей большинства типов он должен находиться в пределах 0,09—0,22 мм.

Биение наружных колец подшипников является следствием их перекосов при установке на двигатели. Такие перекосы приводят к значительному повышению напряжений на краю дорожки качения, повышенному износу и повреждениям сепараторов, к радиальному или осевому защемлению роликов, а иногда и к разрушению подшипников.

Выявить перекос колец можно специальным прибором, разработанным ВНИИЖТом. Прибор имеет кольцо, которое надевается на вал двигателя до упора во внутреннее кольцо подшипника и закрепляется на нем тремя центрирующими винтами. На кольце закреплена стойка с индикатором. Шток индикатора должен упираться своим концом в наружное кольцо подшипника.

Для измерения вертикального перекоса прибор закрепляют на валу и устанавливают индикатор в верхнем положении на нуль. Затем поворачивают индикатор относительно вала на 180° и определяют биение торца (с учетом знака отклонения стрелки). Таким же образом определяют биение и в горизонтальной плоскости. Значение биения определяют как максимальную разность в показаниях индикатора. У правильно установленного подшипника биение торца наружного кольца не должно превышать 0,12 мм.

Осевой разбег якоря измеряют индикатором. Для этого якорь сдвигают до упора в одну сторону, а с противоположной стороны закрепляют на специальной стойке индикатор и прижимают его к торцу вала якоря или коробки (на двигателях электровозов ЧС2) так, чтобы стрелка головки стояла на нуле. Затем якорь перемещают до упора в другое крайнее положение. Отклонение стрелки индикатора укажет осевой разбег. У тяговых двигателей с прямо- и косозубой передачами он должен быть соответственно не более 0,2—0,8 и 5,9—8,4 мм, у вспомогательных машин — 0,6—0,15 мм.

Воздушные зазоры между сердечниками полюсов и якорем машины проверяют щупами. Зазоры не должны превышать значения, установленные Правилами ремонта для машин данного типа.

В противном случае нарушится магнитная симметрия машины, изменятся ее характеристики, снизится коммутационная устойчивость. Недопустимые отклонения значений воздушных зазоров при ремонте машины должны быть устранены, а при ее испытании следует провести тщательную отладку коммутации.

Результаты осмотра электрических машин и проведенных измерений вносят в специальный журнал для использования в дальнейшем при определении необходимого объема их ремонта, после чего двигатель передают на позицию его разборки.


Глава III. Диагностика тягового электродвигателя

3.1 Контроль состояния якорных подшипников

Якорные подшипники служат для поддержания вала якоря. Количество порч и неисправностей на 1 млн км пробега колеблется от 0,44 до 3,68 для якорных подшипников электровозов. Большое количество порч и неисправностей якорных подшипников обусловлено тяжелыми условиями их работы. Тяжелые условия работы якорных подшипников определяются сравнительно высокими динамическими нагрузками, большим числом оборотов якоря, перекосами, возникающими вследствие отклонений, допускаемых при монтаже и изготовлении деталей, сопрягаемых с подшипниками, и в результате упругого прогиба вала якоря, а также нагревом деталей, обусловленным внутренним трением в самом подшипнике, притоком тепла от обмоток двигателя и другими факторами.

Важным условием, обусловливающим надежную работу подшипника, является посадка внутреннего кольца на вал с гарантированным натягом. Невыполнение этого условия приводит к тому, что при максимальном натяге внутренних колец на валах радиальный зазор может отсутствовать и возможно появление преднатяга в подшипнике. В этих случаях он греется, изнашивается, происходит разрушение сепаратора и заклинивание подшипника. Также следует учитывать, что на величину потерь трения и на тепловой режим подшипника весьма сильно влияет степень заполнения корпуса при постоянном объеме смазки. Избыток смазки так же, как и ее недостаток, всегда вызывает нагрев подшипников.

В якорных подшипниках некоторые дефекты появляются как следствие изнашивания и развития усталостных микротрещин. Износ возникает из-за проскальзывания тел качения по кольцу, что значительно возрастает при загрязнении, ухудшении качества смазки, ржавлении. Вследствие циклических нагрузок возникает явление усталости металла как на рабочих поверхностях внутреннего и наружного колец, так и на сепараторе подшипника. Периодические деформации приводят к образованию микротрещин и отслаиванию металла.

Для определения состояния подшипников в локомотивных депо используются методы виброакустической диагностики.

Вибрация, возбуждаемая подшипниками качения, обусловлена в первую очередь дефектами изготовления и монтажа, а также дефектами, возникающими в процессе эксплуатации.

Физическим носителем информации о состоянии элементов подшипника в виброакустической диагностике служат упругие волны, которые возбуждаются в подшипнике соударением этих элементов.

Наряду с методами виброакустической диагностики используется способ акустической эмиссии в ультразвуковой полосе частот.

На этом принципе работает индикатор ресурса подшипников ИРП-12 , который предназначен для проверки на работающем оборудовании технического состояния подшипников качения:

– степени износа подшипников в режимах экспресс контроля;

– наличие смазки в подшипниковых узлах;

– правильность сборки подшипниковых узлов при изготовлении и ремонте.

Прибор состоит из пьезоэлектрического датчика, присоединительного кабеля со штекером, измерительного блока, корпус которого изготовлен из алюминиевого сплава. На корпусе измерительного блока имеется гнездо, кнопка «включено - выключено», кнопка ПИК для фиксации наибольших показаний на дисплее, отсек источников питания с крышкой. Масса прибора (без источника питания) не более 0,4 кг. Устройство и принцип работы прибора иллюстрируется функциональной схемой (рис. 3).

Схема обеспечивает обработку ультразвуковых сигналов от дефектов всех частей подшипника и оценку их совокупного значения в виде обобщенного критерия степени износа подшипника в балльной форме. Критерии степени износа подшипников в цифровой форме выводятся на дисплей. Оценка состояния износа определяется путем сравнивания фактического показания дисплея при проверке технического состояния подшипника с данными, полученными экспериментально по различным дефектам якорных подшипников.

Рис. 3. Функциональная схема прибора ИРП-12

Зависимость между техническим состоянием (степенью износа якорного подшипника) и показанием дисплея D прибора ИРП-12 от времени работы при номинальной нагрузке подшипника представлена на рис.4.

Рис. 4. Зависимость между состоянием подшипника и показателями дисплея прибора ИРП-12

Кривая Dm - a - b - c - d - e в координатах D (показания дисплея) и Т (суммарное время работы в часах с момента установки подшипника при рабочей нагрузке оборудования) показывает степень износа подшипника от времени. Точки кривой соответствуют следующим состояниям подшипника (если дефекты смазки и монтажа отсутствуют):

– Dm –– исходное состояние;

– точка a –– накопленные усталостные микротрещины в поверхностном и приповерхностном слоях тел и дорожек качения приводят к микровыкрашиваниям;

– участок а - b –– развитие поверхностных трещин, мелких выкрашиваний, зарождение пятен выкрашивания на телах и дорожках качения;

– участок b - c –– развитие трещин на телах и дорожках качения, приводящих в дальнейшем к выкрашиванию металла с образованием раковин, начало интенсивного износа сепаратора, рост пятен выкрашивания;

– участок c - d –– образование мелких раковин, развитие трещин до сквозных на кольцах подшипника;

– точка e –– работа подшипника с крупными раковинами, трещинами, генерация значительной вибрации до заклинивания с большим тепловыделением;

– точка d –– вероятное разрушение сепаратора.

Oбласть кривой Dm - a определяет зону устойчивой работы подшипника, a - c –– область возможной эксплуатации, а переход показаний прибора в зону c - e сигнализирует о недопустимости дальнейшей эксплуатации. Для каждого конкретного подшипникового узла кривая D (T ) снимается экспериментально. На ней устанавливают границы областей износа.

Прибор работает следующим образом. Пьезодатчик включенного прибора прикладывается к наружной поверхности подшипникового узла в месте нахождения подшипника. Акустико-эмиссионный сигнал от работающего подшипника в полосе частот 20––300 кГц, несущий информацию об износных дефектах подшипника, после обработки в балльной цифровой форме выводится на дисплей.

С использованием компьютерных технологий работает диагностический комплекс ВЕКТОР-2000 .

Программно-методический комплекс виброакустической диагностики ВЕКТОР-2000 предназначены для:

– контроля технического состояния подшипников качения после их монтажа на локомотиве и в процессе эксплуатации;

– раннего обнаружения дефектов подшипниковых узлов с определением вида и величины всех 12 возможных дефектов подшипника;

– контроля за развитием дефектов вплоть до предаварийного состояния или замены подшипника с максимально возможными интервалами между измерениями;

– экспресс-прогноза технического состояния подшипников качения по однократным или периодическим измерениям вибрации для назначения сроков технического обслуживания или ремонта;

– накопления и хранения информации о состоянии подшипников качения в процессе эксплуатации.

Программно-методическое обеспечение виброакустического комплекса позволяет производить:

– автоматическую обработку результатов измерений вибрации виброанализатором с определением значений диагностических параметров и выводом их на экран монитора;

– автоматическую идентификацию всех обнаруженных из 12 основных дефектов подшипников качения с указанием их глубины;

– автоматическое определение гарантированного срока эксплуатации подшипника до 20 % от его среднего ресурса (при отсутствии опасных дефектов);

– диагностирование неограниченного количества подшипников, формирование и корректировку баз данных;

– ввод в базу данных информации о подшипниках с ее автоматической корректировкой;

– автоматический поиск ошибок и проверка совместимости результатов периодических измерений вибрации;

– детальное диагностирование подшипника в автоматическом режиме с выводом промежуточных результатов на экран монитора;

– подробный анализ спектров огибающей в неавтоматическом режиме;

– внесение в базу данных дополнительной информации;

– вывод на экран монитора или печатающее устройство необходимой документации;

– коррекцию данных подшипников с их последующим автоматическим или ручным передиагностированием по имеющимся в базе данных спектрам огибающей вибрации.

Структура программно-методического комплекса виброакустической диагностики представлена на рис.5.

Рис.5. Программно-методический комплекс виброакустической диагностики.

1- испытуемый объект; 2- спектроанализатор; 3- персональный компьютер; 4- акселерометр

3.2. Анализ результатов и принятие решения по организации ремонта

Подшипник , как и любая деталь, не смотря на свою прочность конструкции, и долговечность в работе, имеет свойство ломаться. Преждевременный выход из строя подшипника может случиться по разным причинам. Так, основными причинами могут быть:

Неправильность монтажа подшипника, а именно пережим стяжной конусной муфты при грубом монтаже,

Неправильная регулировка, а также дефекты геометрии, из-за которых появляется люфт и перегрев детали;

Загрязнённость подшипника, попавшие внутрь детали твёрдые или жидкие инородные частицы повреждают герметизирующее уплотнение, что ведёт к утечке смазки;

Плохое качество смазочных материалов;

Использование подшипника при неприемлемых для него нагрузках;

Электрический ток, проходящий через подшипник.

Неустранимые дефекты

Обычно при причинах поломки описанных выше, неисправный подшипник нужно заменять на новый, особенно если при его внешнем осмотре видно следующие неустранимые дефекты:

  • сколы или трещины на кольцах, телах качения или сепараторе;
    • забоины или вмятины на поверхности дорожки качения внешнего или внутреннего колец;

Стук или повышенный шум в подшипнике, даже после его промывки;

Глубокие царапины на дорожках качения колец, расположенные поперёк движения тел качения;

Чёткие отпечатки тел качения на дорожках качения колец;

Выкрашивание или шелушение поверхности дорожки колец;

- повреждённые посадочные поверхности подшипника.

В остальных вариантах замену подшипника можно отложить, и неисправности можно отремонтировать. Но для начала необходимо провести диагностику неисправленной детали.

Диагностика при ремонте подшипника осуществляется в такой последовательности:

  1. с помощью винтового съёмника необходимо снять с вала внутреннее кольцо;
  2. установить дефект подшипника путём его осмотра, проверки его на лёгкость вращения и шум, а также измерив его осевой и радиальный зазор;
  3. определить, необходима ли полная замена изношенной детали;
  4. выявить степень износа подшипника, замерив зазор между телом качения и дорожкой качения;
  5. результаты всех замеров необходимо сравнить с номинальными значениями.

Ремонт подшипника можно разделить на 2 вида:

  • без переборки тел качения;
    • с переборкой тел качения.

К первому варианту ремонта прибегают, когда диагностика показывает, что с телами качения неисправленного подшипника всё в порядке, чего не скажешь о других его деталях. Действия при таком ремонте, могут быт различные, в зависимости от дефекта: от замены внешнего и внутреннего колец, шлифовке их бортов или дорожек качения, до расточки и замены сепаратора.

Второй вариант ремонта применяется при выявлении дефектов в телах качения, требующих их ремонта или замены. Например, при повреждении чеканки, из-за чего происходит выпадение отдельных шариков или роликов. При таком варианте ремонта неисправный подшипник необходимо полностью разобрать, после чего проводят осмотр всех деталей. При осмотре особенно нужно обращать внимание на то, есть ли трещины в районе перехода основания к перемычкам. Кольца и тела качения подшипника необходимо хорошо отшлифовать. После чего необходимо провести замену и монтаж новых тел качения. При этом нужно помнить, что все заменяемые тела качения, обязательно должны быть одного диаметра и одной формы с теми, которые были установлены на заводе.

После замены старых дефектных деталей на новые и конечной сборки подшипника, его работу необходимо повторно диагностировать, чтобы убедится в том, что дефекты полностью устранены.

3.3. Техника безопасности

Работы по ТО и ТР, испытанию и наладке электрического и электронного оборудования ТПС необходимо производить в соответствии с требованиями Правил эксплуатации электроустановок потребителей (ПЭЭП). Правил техники безопасности при эксплуатации электроустановок потребителей (ПТБ) и технологическими процессами.

Перед началом ремонта электрооборудования ТПС должны быть обесточены все силовые электрические цепи, отключены выключатели тяговых электродвигателей, крышевой разъединитель поставлен в положение "Заземлено", выпущен воздух и перекрыты краны пневматической системы электроаппаратов. Кроме того, при необходимости ремонта отдельных аппаратов, должны быть вынуты предохранители данного участка, предусмотренные конструкцией.

Внешние электрические сети питания переносных диагностических приборов напряжением более 42 В переменного или 110 В постоянного тока должны быть оборудованы защитным заземлением ("занулением" или устройством защитного отключения).

Стенд для диагностики и ремонта электронного оборудования должен иметь защитное заземление ("зануление" или устройство защитного отключения).

Испытания электрических машин, аппаратов и счетчиков электрической энергии на электрическую прочность изоляции после ремонта перед установкой на ТПС (кран) должны производиться на специально оборудованной станции (площадке, стенде), имеющей необходимое ограждение, сигнализацию, знаки безопасности и блокирующие устройства.

Перед началом и во время испытаний на станции (площадке) не должны находиться посторонние лица.

Сборка схем на испытательных стендах должна осуществляться при полном снятии напряжения. Питающие кабели для испытания электрических машин и аппаратов высоким напряжением должны быть надежно присоединены к зажимам, а корпуса машин и аппаратов заземлены.

Подачу и снятие напряжения необходимо осуществлять контакторами с механическим или электромагнитным приводом или рубильником, имеющим защитный кожух.

Пересоединение на зажимах испытываемых машин и аппаратов должно производиться после отключения всех источников питания и полной остановки вращающихся деталей.

Измерение сопротивления изоляции, контроль нагрева подшипников, проверка состояния электрощеточного механизма должны производиться после отключения напряжения и полной остановки вращения якоря.

При пайке наконечников на проводе непосредственно на ТПС (кране) должен использоваться надежно закрепленный тигель, исключающий выплескивание из него припоя.

При измерении сопротивления изоляции электрических цепей мегаомметром на напряжение 0,5 и 2,5 кВ выполнение каких-либо других работ на электрооборудовании и электрических цепях ТПС запрещается.

Перед испытаниями высоким напряжением сопротивления изоляции электрических цепей ТПС (крана) все ремонтные работы должны быть прекращены, работники выведены, входные двери на ТПС (кране) закрыты, а с четырех сторон на расстоянии 2 м установлены переносные знаки "Внимание! Опасное место".

Перед подачей высокого напряжения необходимо подать звуковой сигнал и объявить по громкоговорящей связи: "На локомотив (кран), стоящий на такой-то канаве, подается напряжение". Управлять испытательным агрегатом должен руководитель работ, проводить испытания - персонал, прошедший специальную подготовку.

Корпус передвижного трансформатора и рамы испытываемого ТПС необходимо заземлить.

После ремонта ЭПС подъем токоприемника и опробование электровоза или электросекции под рабочим напряжением должно производить лицо, имеющее право управления, в присутствии проводившего ремонт мастера или бригадира, которые до начала опробования должны убедиться в том, что:

  • все работники находятся в безопасных местах, и подъем токоприемника не грозит им опасностью
  • закрыты люки машин, двери шкафов управления, щиты стенок ВВК, реостатных помещений, крышки подвагонных аппаратных ящиков;
  • в ВВК и под кузовом нет людей, инструментов, материалов и посторонних предметов;
  • закрыты двери в ВВК, складные лестницы и калитки технологических площадок для выхода на крышу;
  • с машин и аппаратов после их ремонта сняты все временные присоединения;
  • машины, аппараты, приборы и силовые цепи готовы к пуску и работе.

После этого работник, поднимающий токоприемник, должен громко объявить из окна кабины локомотива: "Поднимаю токоприемник", подать звуковой сигнал свистком локомотива и поднять токоприемник способом, предусмотренным конструкцией данного электровоза или электросекции.

При поднятом и находящемся под напряжением токоприемнике разрешается:

1.заменять перегоревшие лампы в кабине машиниста, в кузове (без захода в ВВК и снятия ограждений), лампы освещения ходовых частей, буферных фонарей, внутри вагонов электросекций при обесточенных цепях освещения;

2.протирать стекла кабины внутри и снаружи, лобовую часть кузова, не приближаясь к токоведущим частям, находящимся под напряжением контактной сети, на расстояние менее 2 м и не касаясь их через какие-либо предметы:

  • заменять предохранители в обесточенных цепях управления;
  • заменять прожекторные лампы при обесточенных цепях, если их смена предусмотрена из кабины машиниста:
  • осматривать тормозное оборудование и контролировать выходы штоков тормозных цилиндров: на электровозах типа ЧС - только на смотровой канаве, на электросекциях - не залезая под кузов:
  • проверять на ощупь нагрев букс;
  • настраивать электронный регулятор напряжения;
  • продувать маслоотделители и концевые рукава тормозной и напорной магистралей;
  • заправлять песочные бункера электропоездов;
  • контролировать подачу песка под колесную пару;
  • вскрывать кожух и настраивать регулятор давления. Кроме того, на электровозах дополнительно разрешается:
  • обслуживать аппаратуру под напряжением 50 В постоянного тока, которая находится вне ВВК;
  • проверять цепи электронной защиты под наблюдением мастера, стоя на диэлектрическом коврике и в диэлектрических перчатках;
  • контролировать по приборам и визуально работу машин и аппаратов, не снимая ограждений и не заходя в ВВК;
  • включать автоматы защиты;
  • обтирать нижнюю часть кузова;
  • осматривать механическое оборудование и производить его крепление, не залезая под кузов;
  • проверять давление в масляной системе компрессора;
  • регулировать предохранительные клапаны воздушной системы;
  • производить уборку (кроме влажной) кабины, тамбуров и проходов в машинном отделении.

Другие работы на ЭПС при поднятом и находящемся под напряжением токоприемнике запрещаются.


Заключение

В данной курсовой работе я рассмотрел методы диагностики тягового электродвигателя (ТЭД), среди которых был описан виброакустический метод диагностирования, на этом методе работают приборы ИРП-12 и ВЕКТОР-2000, способные выявить различные дефекты и нарушения рабочих характеристик тягового электродвигателя. Во время написания работы я придерживался методических рекомендаций.


Список использованной литературы

  1. ВЛ80с: Руководство по эксплуатации /Н.М.Васько, А.С. Девятков, А.Ф.Кучеров и др. - М.: Транспорт, 1990
  2. Николаев А.Ю., Сесявин Н.В. Устройство и работа электровоза ВЛ80с – М.: Маршрут, 2010
  3. Грузовые электровозы переменного тока: Справочник/ З.М.Дубровский, В.И.Попов, Б.А.Тушканов – М.: Транспорт, 1998
  4. Находкин В.М., Яковлев Д.В., Черепашенец Р.Г. Ремонт электроподвижного состава – М.: Транспорт, 2009
  5. Правила текущего ремонта и технического обслуживания электровозов переменного тока.
  6. Жуков В.И. Охрана труда на железнодорожном транспорте. Учебное пособие для средних профессионально-технических училищ. - М.: Транспорт, 2008.

Дополнительные источники информации

  1. Сайт « Железнодорожный форум, блоги, фотогалерея, социальная сеть »

Доступ к сайту: открытый

Адрес сайта: www .сцибист. ru

  1. Сайт « Помощник машиниста электровоза или тепловоза »

Доступ к сайту: открытый

Адрес сайта: www.pomogala.ru

PAGE 2


А также другие работы, которые могут Вас заинтересовать

30408. Неолитическая революция. Динамика развития цивилизации, этапы ее развития на историческом примере 33.35 KB
Падают темпы роста производительности общественного труда разражается новый кризис завершающий фазу зрелости. В основе прогресса лежали ступени общественного разделения труда сделавшие возможным производство прибавочного продукта. Выделение скотоводов и земледельцев →новые орудия труда обмен продуктами труда. Признаки кризиса: недостаток орудий труда зависимость от источников сырья падение производительности труда и численности населения сложившаяся система экономических отношений не удовлетворяла запросы производителей...
30409. Переходный период цивилизаций: основные этапы и итоги 30.38 KB
В духовной сфере зарождаются новые открытия экономические общественно-политические теории. Формируются новые технологии. Механизмы старой цивилизации рушатся а новые еще не установлены. Во время перехода на всех этажах пирамиды сталкиваются старые и новые.
30410. Переходный этап в развитии цивилизации на историческом примере перехода от неолитической к раннеклассовой 28.5 KB
Переходный этап в развитии цивилизации на историческом примере Переходный период от неолитической к раннеклассовой глобальной цивилизации на примере древних обществ Междуречья Уже в 4тыс. Достижения неолитической цивилизации позволили шумерам увеличить свою численность а с конца 4 тыс.о к началу 3 тыс. В первой половине 3 тыс.
30411. Основные особенности и достижения глобальной неолитической цивилизации 32.9 KB
Произошла неолитическая катастрофа т. Неолитическая революция переход от эпизодического выращивания злаков и приручения животных к регулярному воспроизводству продуктов питания на основе земледелия и скотоводства т. Неолитическая революция положила начало формированию неолитической цивилизации и всей человеческой цивилизации в целом. Неолитическая революция предложила два выхода: 1.
30412. Методы ценообразования в туризме 45.5 KB
количество отправлений туристов достич нулевую рентабельность работать не в убыток определить истинную цену тура рассчитать норму прибыли. Издержки бывают: Постоянные не зависят от объема работы ТО аренда зарплата коммунальные платежи интернет Переменные они меняются от тура к туру и зависят от объема работы ТО. неизвестно скольуо человек будет в группе Стоимость тура для сопровождающего Стоимость обслуживания тура это затраты рабочего времени сотрудников фирмы и денежные расходы на организацию продаж Норма прибыли...
30413. Основные направления инновации в туризме 38 KB
большая часть инноваций в туризме связанна с инновациями в транспорте. Другим направлением инноваций в туризме являются информационные технологии которые позволяют решать большинство проблем по бронированию туров способствует более эффективной работе фирм.
30414. Сегментация туристского рынка 41.5 KB
Обычно выделяют: А ВИП клиенты Б Туркласс В Эконом класс Эти группы определяются в каждом регионе по своему т. Члены фокусгруппы должны иметь одинаковые потребности и возможности. Члены фокусгруппы должны быть активными покупателями туристических услуг и не охвачены конкурентами.
30415. Статистическая информация 39 KB
Характерной особенностью статистической информации являются: Массовость Периодичность Получение и обработка Возможность хранения Статистическую информацию принято классифицировать: По принадлежности к отраслям экономики статистика туризма По месту возникновения государственная статистика статистика конкретного предприятия По периодичности ежегодная ежеквартальная Статистика туризма исследует информацию которая характеризует все процессы происходящие в туристической индустрии.

ЦЕЛЬ РАБОТЫ
Заданием на письменную экзаменационную работу было предложено описать назначение и конструкцию тягового электродвигателя, технологический процесс ремонта его якоря, изучить безопасные приёмы труда, меры по экономичному расходованию материалов при ремонте, а также начертить чертеж на формате А1, содержащий общий вид тягового электродвигателя ТЛ-2К1.

1 КРАТКАЯ ХАРАКТЕРИСТИКА
ТЯГОВОГО ЭЛЕКТРОДВИГАТЕЛЯ ТЛ-2К

1.1 Назначение тягового двигателя ТЛ-2К.
На электровозе ВЛ10 установлены восемь тяговых электродвигателей типа ТЛ2К. Тяговый электродвигатель постоянного тока ТЛ2К предназначен для преобразования электрической энергии, получаемой из контактной сети, в механическую. Вращающий момент с вала якоря электродвигателя передается на колесную пару через двустороннюю одноступенчатую цилиндрическую косозубую передачу. При такой передаче подшипники двигателя не получают добавочных нагрузок по аксиальному направлению. Подвеска электродвигателя опорно-осевая. Электродвигатель с одной стороны опирается моторно-осевыми подшипниками на ось колесной пары электровоза, а с другой на раму тележки через шарнирную подвеску и резиновые шайбы. Система вентиляции независимая, с подачей вентилирующего воздуха сверху в коллекторную камеру и выбросом сверху с противоположной стороны вдоль оси двигателя. Электрические машины обладают свойством обратимости, заключающимся в том, что одна и та же машина может работать как двигатель и как генератор. Благодаря этому тяговые электродвигатели используют не только для тяги, но и для электрического торможения поездов. При таком торможении тяговые двигатели переводят в генераторный режим, а вырабатываемую ими за счет кинетической или потенциальной энергии поезда электрическую энергию гасят в установленных на электровозах резисторах (реостатное торможение) или отдают в контактную сеть (рекуперативное торможение).

1.2 Принцип работы ТЛ-2К.

При прохождении тока по проводнику, расположенному в магнитном поле, возникает сила электромагнитного взаимодействия, стремящаяся перемещать проводник в направлении, перпендикулярном проводнику и магнитным силовым линиям. Проводники обмотки якоря в определенном порядке присоединены к коллекторным пластинам. На внешней поверхности коллектора установлены щетки положительной (+) и отрицательной (-) полярностей, которые при включении двигателя соединяют коллектор с источником тока. Таким образом, через коллектор и щетки получает питание током обмотка якоря двигателя. Коллектор обеспечивает такое распределение тока в обмотке якоря, при котором ток в проводниках, находящийся в любое мгновение времени под полюсами одной полярности, имеет одно направление, а в проводниках, находящихся под полюсами другой полярности, - противоположное.
Катушки возбуждения и обмотка якоря могут получать питание от разных источников тока, т. е тяговый двигатель будет иметь независимое возбуждение. Обмотка якоря и катушки возбуждения могут быть соединены параллельно и получать питание от одного и того же источника тока, т.е тяговый двигатель будет иметь параллельное возбуждение. Обмотка якоря и катушки возбуждения могут быть соединены последовательно и получать питание от одного источника тока, т.е тяговый двигатель будет иметь последовательное возбуждение. Сложным требованием эксплуатации наиболее полно удовлетворяют двигатели с последовательным возбуждением, поэтому их применяют на электровозах.

1.3 Устройство ТЛ-2К.
Тяговый двигатель ТЛ-2К имеет глухие подшипниковые щиты с выбросом охлаждающего воздуха через специальный патрубок.
Он состоит из остова, якоря, щеточного аппарата и подшипниковых щитов (рис.1). Остов двигателя 3 представляет собой отливку из стали марки 25Л цилиндрической формы и служит одновременно магнитопроводом. К нему крепятся шесть главных 34 и шесть дополнительных 4 полюсов, поворотная траверса 24 с шестью щеткодержателями 1 и щиты с роликовыми подшипниками, в которых вращается якорь 5 двигателя. С наружной поверхности остов имеет два прилива 27 для крепления букс моторно-осевых подшипников, прилив и съемный кронштейн для подвески двигателя, предохранительные приливы и приливы с отверстиями для транспортировки. Со стороны коллектора имеются три люка, предназначенные для осмотра щеточного аппарата и коллектора. Люки герметично закрываются крышками. Крышка верхнего коллекторного люка укреплена на остове специальным пружинным замком, крышка нижнего одним болтом М20 и специальным болтом с цилиндрической пружиной и крышка второго нижнего люка четырьмя болтами М12. Для подачи воздуха имеется вентиляционный люк. Выход вентилирующего воздуха осуществлен со стороны, противоположной коллектору, через специальный кожух, укрепленный на подшипниковом щите и остове.

Выводы из двигателя выполнены кабелем марки ПМУ-4000 сечением 120 мм2. Кабели защищены брезентовыми чехлами с комбинированной пропиткой. На кабелях имеются ярлычки из полихлорвиниловых трубок с обозначениями Я, ЯЯ, К и КК. Выводные кабели Я и ЯЯ соединены с обмотками: якоря, дополнительных полюсов и с компенсационной, а выводные кабели К и КК соединены с обмотками главных полюсов.
Сердечники главных полюсов собраны из листовой электротехнической стали толщиной 0,5 мм, скреплены заклепками и укреплены на остове четырьмя болтами М24 каждый. Между сердечником главного полюса и остовом имеется одна стальная прокладка толщиной 0,5 мм. Катушка главного полюса, имеющая 19 витков, намотана на ребро из мягкой ленточной меди МГМ размерами 1,?95 65 мм, изогнута по радиусу для обеспечения прилегания к внутренней поверхности остова. Корпусная изоляция состоит из восьми слоев стекломикаленты марки ЛМК-ТТ 0,13*30 мм и одного слоя стеклоленты толщиной 0,2 мм, уложенных с перекрытием в половину ширины ленты. Межвитковая изоляция выполнена из бумаги асбестовой в два ряда слоя толщиной 0,2 мм и пропитана лаком К-58. Для улучшения рабочих характеристик двигателя применена компенсационная обмотка, расположенная в пазах, проштампованных в наконечниках главных полюсов, и соединенная с обмоткой якоря последовательно. Компенсационная обмотка состоит из шести катушек, намотанных из мягкой прямоугольной медной проволоки МГМ сечением 3,28?22 мм и имеет 10 витков. В каждом пазу расположено по два стержня. Корпусная изоляция состоит из 9 слоев микаленты марки ЛФЧ-ББ 0,1х20 мм и одного слоя стеклоленты толщиной 0,1 мм, уложенных с перекрытием в половину ширины ленты. Витковая изоляция имеет один слой микаленты толщиной 0,1 мм, уложенной с перекрытием в половину ширины ленты. Крепление компенсационной обмотки в пазах клиньями из текстолита марки Б.
Сердечники дополнительных полюсов выполнены из толстолистового проката или поковки и укреплены на остове тремя болтами М20 каждый. Для уменьшения насыщения добавочного полюса между остовом и сердечником дополнительных полюсов предусмотрены латунные прокладки толщиной 7 мм. Катушки дополнительных полюсов намотаны на ребро из мягкой медной проволоки МГМ сечением 6х20 мм и имеют 10 витков каждая.
Корпусная и покровная изоляция этих катушек аналогична изоляции катушек главного полюса. Межвитковая изоляция состоит из асбестовых прокладок толщиной 0,5 мм, пропитанных лаком К-58.
Щеточный аппарат тягового электродвигателя состоит из траверсы разрезного типа с поворотным механизмом, шести кронштейнов и шести щеткодержателей. Траверса стальная, отливка швеллерного сечения имеет по наружному ободу зубчатый венец, входящий в зацепление с шестерней поворотного механизма. В остове фиксирована и застопорена траверса щеточного аппарата болтом фиксатора, установленным на наружной стенке верхнего коллекторного люка, и прижата к подшипниковому щиту двумя болтами стопорного устройства: одно – внизу остова, второе – со стороны подвески. Электрическое соединение кронштейнов траверсы между собой выполнено кабелями ПС-4000 сечением 50 мм2.
Кронштейны щеткодержателя разъемные (из двух половин) закреплены болтами М20 на двух изоляционных пальцах, установленных на траверсе. Изоляционные пальцы представляют собой стальные шпильки, опрессованные прессмассой АГ-4, сверху на них насажены фарфоровые изоляторы. Щеткодержатель имеет две цилиндрические пружины, работающие на растяжение. Пружины закреплены одним концом на оси, вставленной в отверстие корпуса щеткодержателя, другим на оси нажимного пальца с помощью регулирующего винта, которым регулируют натяжение пружины. Кинематика нажимного механизма выбрана так, что в рабочем диапазоне обеспечивает практически постоянное нажатие на щетку. Кроме того, при максимально допустимом износе щетки давление нажимного пальца на нее автоматически прекращается. Это позволяет предотвратить повреждение рабочей поверхности коллектора шунтами сработанных щеток. В окна щеткодержателя вставлены две разрезные щетки марки ЭГ-61 размером 2(8х50)х60 мм с резиновыми амортизаторами. Крепление щеткодержателей к кронштейну осуществлено шпилькой и гайкой.
Для более надежного крепления и для регулировки положения щеткодержателя относительно рабочей поверхности по высоте коллектора на корпусе щеткодержателя и кронштейна предусмотрена гребенка.
Якорь двигателя состоит из коллектора обмотки, вложенной в пазы сердечника, набранного в пакет из лакированных листов электротехнической стали марки Э-22 толщиной, 0,5 мм, стальной втулки, задней и передней нажимных шайб, вала, катушек и 25 секционных уравнителей, концы которых впаяны в петушки коллектора. В сердечнике имеется один ряд аксиальных отверстий для прохода вентилирующего воздуха. Передняя нажимная шайба одновременно служит корпусом коллектора. Все детали якоря собраны на общей втулке коробчатой формы, напрессованной на вал якоря, что обеспечивает его замены. Катушка имеет 14 отдельных проводников, расположенных по высоте в два ряда, и по семи проводников в ряду, они изготовлены из ленточной меди размером 0,9?8,0 мм марки МГМ и изолированы одним слоем с перекрытием в половину ширины микаленты ЛФЧ-ББ толщиной 0,075 мм. Корпусная изоляция пазовой части катушки состоит из шести слоев стеклослюдянитовой ленты ЛСК-110тт 0,11х20 мм, одного слоя ленты электроизоляционного фторопласта толщиной 0,03 мм и одного слоя стеклоленты толщиной 0,1 мм, уложенных с перекрытием в половину ширины ленты. Уравнители секционные изготавливают из трех проводов сечением 0,90х2,83 мм марки ПЭТВСД. Изоляция каждого провода состоит из одного слоя стеклослюдянитовой ленты ЛСК-110тт 0,11х20 мм, одного слоя ленты электроизоляционного фторопласта толщиной 0,03 мм и одного слоя стеклоленты толщиной 0,11 мм. Вся изоляция уложена с перекрытием половины ширины ленты. В пазовой части обмотка якоря крепится текстолитовыми клиньями, а в лобовой части – стеклобандажом. Коллектор тягового двигателя с диаметром рабочей поверхности 660 мм состоит из 525 медных пластин, изолированных друг от друга миканитовыми прокладками.
От нажимного конуса и корпуса коллектор изолирован миканитовыми манжетами и цилиндром. Обмотка якоря имеет следующие данные: число пазов – 75, шаг по пазам – 1 – 13, число коллекторных пластин – 525, шаг по коллектору – 1 – 2, шаг уравнителей по коллектору – 1 – 176.
Якорные подшипники двигателя тяжелой серии с цилиндрическими роликами типа 8Н2428М обеспечивают разбег якоря в пределах 6,3 – 8,1 мм. Наружные кольца подшипников запрессованы в щиты подшипников, а внутренние кольца напрессованы на вал якоря. Подшипниковые камеры для предотвращения воздействия внешней среды и утечки смазки имеют уплотнения. Подшипниковые щиты запрессованы в остов и прикреплены к нему каждый восемью болтами М24 с пружинными шайбами. Моторно-осевые подшипники состоят из латунных вкладышей, залитых по внутренней поверхности баббитом Б16, и букс с постоянным уровнем смазки. Буксы имеют окно для подачи смазки. Для предотвращения поворота вкладышей предусмотрено в буксе шпоночное соединение.

2 РЕМОНТ ЯКОРЯ В ОБЪЕМЕ ТР-3

2.1 Очистка якоря
Перед осмотром и ремонтом якорь очищают. При работе тягового двигателя для улучшения отвода тепла от нагретой обмотки якорь постоянно обдувается потоком охлаждающего воздуха, подаваемого в двигатель от вентиляторов под некоторым напором. Воздух несет с собой частицы пыли, а также продукты износа электрощеток. С охлаждающим воздухом внутрь двигателя проникает влага, снег. Эти загрязнения и влага попадают в зазоры между шинками секций обмотки у петушков коллектора, в межламельные промежутки коллектора и вентиляционные каналы сердечника якоря, а также скапливаются на поверхности якоря, в углублениях между катушками на выходе их из паза, на изолированном конусе коллектора особенно тогда, когда его глянцевая поверхность обожжена круговым огнем.
Наличие щеточной пыли и других загрязнений на изолированных поверхностях якоря значительно снижает устойчивость двигателя к перебросам, а также электрическую прочность изоляции обмоток и коллектора. Пыль, смешанная с влагой, накапливается также на стенках вентиляционных каналов сердечника; при этом живое сечение каналов уменьшается и ухудшается теплоотвод от сердечника. Это приводит к увеличению нагрева обмоток в эксплуатации, снижению их надежности и срока службы. Пыль и загрязнения при пропитке якорей могут попадать в пропиточный лак и вместе с ним проникать в изоляцию обмотки, что значительно снижает изоляционные характеристики обмоток и способствует их повреждению.
Следовательно, очистку якорей следует рассматривать как одну из важнейших операций при их ремонте и поэтому необходимо следить за тем, чтобы производилась она тщательно. Все щели, в которых возможны скопления загрязнений, продувают и очищают пылесосом, а поверхностные загрязнения удаляют продувкой и протиркой поверхности сначала увлажненными в бензине (изоляционные поверхности, коллектор) или керосине (другие металлические поверхности), а затем сухими техническими салфетками.
Вентиляционные каналы прочищают специальными щетками-ершами. В настоящее время с целью повышения эффективности очистки якорей проводят работы по изысканию составов синтетических моющих средств, а в отдельных депо осуществляют практические шаги по их применению. Такими средствами являются водные растворы «Концентрат-Термос» («Термос-К»), МЛ-80, отходы производства синтамида и др. В состав «Термос-К» и других синтетических моющих средств входят поверхностно-активные вещества, которые способствуют хорошей очистке загрязненных поверхностей. Целесообразно применение этих веществ осуществлять в моечных машинах. Преимуществом этих средств является также возможность их регенерации, т. е. при накоплении в моющих растворах загрязнений сверх установленных норм они могут подвергаться очистке и вновь использоваться. Синтетические моющие средства необходимо применять в соответствии с действующей инструкцией.

2.2 Дефектировка

После очистки для удобства осмотра якорь устанавливают на специальную установку, обеспечивающую возможность его поворота, на которой проверяют состояние его изоляции, выявляют степень износа его
узлов и дефектные детали. Перед тем как приступить к ремонту якоря, измеряют сопротивление его изоляции, активное сопротивление обмотки, обращают внимание на наличие межвитковых замыканий и обрывов витков секций, а также качество пайки обмотки в петушках коллектора.
При замерах сопротивления изоляции один выводной конец мегаомметра прикладывают к коллектору, который предварительно закорачивают проводом, другой - к валу якоря. Сопротивление изоляции якоря при этих измерениях, т. е. в холодном состоянии, должно быть не ниже 5 МОм. Если оно ниже, это означает, что в обмотке якоря или в изоляции коллектора имеются дефекты либо изоляция увлажнена. При пробое изоляции или очень сильном увлажнении мегаомметр покажет 0.
После контроля сопротивления изоляции якоря проверяют на наличие межвитковых замыканий. Межвитковое замыкание, если оно произошло в доступном для осмотра месте, иногда удается обнаружить при внешнем осмотре якоря и коллектора. Более тщательную проверку наличия межвитковых замыканий выполняют специальными приспособлениями.

2.3 Осмотр и ремонт механической части якоря

Магнитный контроль шеек и конусов вала выполняют круглыми магнитно-порошковыми дефектоскопами переменного тока. Каждый конус вала проверяют при двух положениях дефектоскопа, устанавливая его то с одной, то с другой стороны проверяемой поверхности. Шейки вала под якорные подшипники, а также внутренние кольца роликовых подшипников, если их не требуется снимать с вала, проверяют при одном положении дефектоскопа. Наиболее часто трещины появляются в переходных галтелях вала, поэтому при магнитной дефектоскопии эти места проверяют особенно тщательно. Если на шейках вала обнаружены задиры, трещины или другие дефекты, дефектную шейку протачивают до полного удаления дефекта.
Восстановление изношенных поверхностей валов. Перед наплавкой поверхность очищают от загрязнений, обезжиривают и проверяют магнитным дефектоскопом. Если на поверхностях, подлежащих наплавке, имеются вмятины или забоины глубиной до 2 мм, то вал протачивают до удаления этих дефектов. Если наплавку начинают на поверхностях, находящихся от торца вала на расстоянии более 50 мм, то предварительно вал необходимо подогреть до температуры 300-350 °С. Для подогрева используют индукционный нагреватель. Подогрев должен быть равномерным. Если наплавку выполняют с торца, то подогрев необязателен. В этом случае на торец закрепляют специальное кольцо из малоуглеродистой стали шириной 20 мм. С этого кольца начинают наплавку.
После наплавки шов зачищают до металлического блеска. Никакие дефекты в наплавленном металле не допускаются. При наплавке в два слоя первый слой зачищают до металлического блеска, проверяют, затем наплавляют второй слой. Наплавку вала начинают на меньшем диаметре и ведут в направлении к галтели. После прохода галтели обязательно наплавляют еще 2-3 витка на участке большего диаметра.
Наплавленные места валов протачивают, а затем проверяют магнитным дефектоскопом и упрочняют накаткой. Накатке подвергают всю наплавленную поверхность и прилегающие к ней участки вала на длине 30-50 мм, а также переходные галтели. Перед накаткой поверхности вала должны быть обточены и иметь шероховатость по 5-му классу.
Накатку выполняют на токарном станке при помощи двух роликовых приспособлений, оборудованных автоматическим регулятором давления, обеспечивающим постоянное усилие накатки. В приспособлении имеются два ролика - упрочняющий и сглаживающий диаметром 100 мм. Профильный радиус упрочняющего ролика 14 мм, сглаживающего - 50 мм. Усилие накатки 14 кН (1400 кгс), подача станка 0,2-0,3 об/мин, частота вращения вала 250 об/мин.
Уменьшение диаметра вала после накатки должно быть в пределах 0,03-0,05 мм. Накатываемую поверхность смазывают машинным маслом. После накатки вал шлифуют. Размеры и чистота обработки восстановленных шеек и конуса вала должны соответствовать размерам и чистоте обработки, указанным в чертежах и правилах ремонта.
При ремонте тяговых двигателей, и особенно двигателей ТЛ-2К1, необходимо внимательно осматривать якорь, обращая особое внимание на плотность посадки его элементов, и не допускать выпуска в эксплуатацию якорей с указанными дефектами.
Очень тщательно следует проверять плотность установки пакета сердечника на якорях, у которых обнаружены обрывы витков обмотки якоря. Обрывы секций обмотки якоря ухудшают коммутацию тягового двигателя, и часто их можно обнаружить по состоянию коллектора и электрощеток. На коллекторных пластинах, которые были соединены с оборванными секциями, и на коллекторных пластинах, находящихся рядом с ними, обычно имеются подгары и оплавления, наблюдаются также подгары на электрощетках. Можно обнаружить подгары также на коллекторных пластинах, отстоящих от дефектных (с обрывом секции) на двойное полюсное деление. В отдельных случаях в петушках коллекторов с обрывом секций имеются следы выплавления припоя. Якоря, имеющие ослабление пакета сердечника и задней нажимной шайбы, необходимо отправлять в капитальный ремонт. О наличии таких дефектов следует обязательно указывать в техническом паспорте якоря перед его отправкой на ремонтный завод.

2.4 Осмотр и ремонт коллектора

Конструкция коллектора предусматривает необходимые элементы, обеспечивающие защиту его корпусной изоляции от проникновения к ней влаги и загрязнений. В случаях когда эти уплотнения выполнены неудовлетворительно и внутрь коллектора попадают влага и загрязнения, в эксплуатации могут произойти замыкание между коллекторными пластинами и пробой корпусной изоляции коллектора. Аналогичные неисправности возможны при ослаблении коллекторных болтов. Поэтому при деповском ремонте тщательно осматривают коллектор и проверяют его техническое состояние.
Важной изоляционной поверхностью коллектора является его передний миканитовый конус. Нажимной передний конус коллектора изолирован миканитом и стеклобандажной лентой (два слоя вполуперекрышу) и покрыт электроизоляционной эмалью. Если поверхность конуса имеет закопченность, подгары и другие дефекты, их зачищают до удаления верхнего слоя лака, тщательно протирают.
После очистки конуса его покрывают эмалью НЦ-929 или ГФ-92-ХК не менее двух раз до получения гладкой глянцевой поверхности.
Обстукиванием проверяют плотность затяжки коллекторных болтов. Коллектор, имеющий ослабление болтов или гаек, нагревают до температуры 90 °С, после чего болты подтягивают. Подогрев коллектора для подтягивания болтов целесообразно совмещать с сушкой якоря при режимах пропитки и покрытия его электроизоляционной эмалью. Подтяжку осуществляют равномерным подворачиванием диаметрально противоположных болтов. Для предотвращения перекосов коллектора и повреждения его изоляции болты поворачивают сразу не более чем на половину оборота.
Измеряют диаметр рабочей поверхности коллектора. В случаях когда диаметр коллектора менее установленного размера, якорь отправляют в заводской ремонт для замены коллектора.
Разница чисел коллекторных пластин в полюсных дугах не должна быть больше одной пластины. Если эта разница больше, то якорь рекомендуется отправить на завод в капитальный ремонт, при котором выполняют полную разработку коллектора. В условиях депо такие дефекты исправить нельзя. Отправка на завод необходима особенно в тех случаях, когда есть сведения о том, что до снятия с электровоза тяговый двигатель с этим якорем работал неудовлетворительно (имели место неоднократные отключения защиты вследствие перебросов и кругового огня, заволакивание межламельных канавок, повышенный износ рабочей поверхности и другие дефекты). Если двигатель работал устойчиво, то якорь может быть направлен для сборки со своим остовом, но в его паспорте указывают о неравномерном распределении коллекторных пластин. За работой двигателя, в который будет установлен этот якорь, устанавливают контроль в эксплуатации.
Проверяют состояние пайки обмотки якоря в петушках коллектора. Если при осмотре обнаружены выплавление припоя (или олова) из петушков коллекторных пластин, неудовлетворительное качество пайки обмотки, обмотку в петушках коллектора пропаивают.
Рабочая поверхность коллектора в эксплуатации изнашивается, и в деповской ремонт двигатель обычно поступает с выработкой на поверхности коллектора и повышенным биением, с подгаром пластин, «затягиванием» меди в межламельные канавки. Коллекторы с такими дефектами подлежат ремонту.
Недостаточная чистота обработки коллектора и наличие неровностей на его рабочей поверхности (подгаров, оплавления, износа, повышенного биения) или даже небольшого выступания отдельных пластин - медных или изоляционных - нарушают работу скользящего контакта и приводят к повреждениям двигателей в эксплуатации. Поэтому обработка коллектора - очень ответственная технологическая операция, ее поручают наиболее квалифицированным работникам и проводят под руководством мастера цеха.
В процессе ремонта рабочую поверхность коллектора обтачивают, шлифуют, межламельные канавки продороживают. Торцы пластин со стороны изоляционного конуса закругляют радиусом 3 мм и осуществляют разделку ламелей с обеих сторон.
Последовательность операций при обработке коллектора установлена следующая. Сначала производят продорожку коллектора, затем - его обточку, снятие фасок и, наконец, шлифовку и полировку рабочей поверхности. Обточку, шлифовку, продорожку коллектора целесообразно выполнять на специальном универсальном станке. Якорь устанавливают на станке и центрируют относительно беговой дорожки внутреннего кольца роликового подшипника или (если кольцо снято) относительно шейки вала. Этим достигается концентричность рабочей поверхности коллектора с валом двигателя, а следовательно, минимальное биение коллектора после обточки. Глубина межламельных канавок коллекторов тяговых двигателей принята 1,4-1,6 мм, т. е. несколько большей толщины коллекторного миканита. Более глубокая продорожка нецелесообразна, так как тогда канавка между коллекторными пластинами приобретает вид щели, которая в эксплуатации быстро засоряется угольной пылью, пыль плотно оседает в ней, особенно при увлажнении коллектора, что в дальнейшем вызывает перекрытия и замыкания между соседними пластинами и повышенное искрение на коллекторе.
Минимальная глубина межламельных канавок в эксплуатации установлена 0,5 мм.
После обточки по краю коллекторной пластины вдоль ее рабочей поверхности снимают фаску размером 0,2 мм под углом 45°. Снимать фаску большего размера не рекомендуется, так как это уменьшает рабочую часть пластины, что в свою очередь увеличивает плотность тока под электрощеткой. Целесообразно снимать фаску под углом относительно вертикальной оси пластины, несколько меньшим 45° (~30°). Тогда форма канавки будет способствовать лучшему выдуванию из нее пыли.
После снятия фасок коллектор шлифуют мелким стеклянным полотном, набитым на колодку, обеспечивая шероховатость поверхности по 8-му классу.
После обточки и шлифовки рекомендуется выполнить полировку коллектора или накатку специальным роликом.

2.5 Ремонт обмотки якоря

Около 35% повреждений тяговых двигателей происходит из-за межвитковых замыканий и пробоев изоляции их якорей. Эти повреждения значительно снижают надежность электровозов в эксплуатации, так как они весьма часто требуют их непланового ремонта и обязательной выкатки двигателя и отправки его (или якоря) в капитальный ремонт на завод. В некоторых случаях указанные повреждения приводят к порчам электровозов в пути следования. Повреждения изоляции обмотки якоря являются, как правило, следствием ее старения в процессе эксплуатации или неудовлетворительного качества изготовления, ремонта обмоток и содержания их в эксплуатации. Пробои и межвитковые замыкания обмотки якоря чаще всего обнаруживают на выходе якорных катушек из пазов, т. е. в местах с наибольшей неравномерностью электрического поля, или у петушков коллектора. В соответствии с действующими правилами ремонта обязательная пропитка обмоток якорей электрических машин электровозов с последующим покрытием их электроизоляционной эмалью предусмотрена при среднем ремонте через пробег ~700 тыс. км от начала эксплуатации или предыдущего капитального ремонта. При среднем ремонте пропитку выполняют 2 раза: первый раз вакуум-нагнетательным способом в специальных баках, второй - окунанием.
Большое влияние на состояние изоляции обмоток якорей оказывает прочность их крепления на сердечнике. В тяговых двигателях обмотки на сердечнике якоря укрепляют в лобовых частях бандажами, изготовленными из стеклонитей, покрытых специальным лаком, или из стальной проволоки, скрепленной скобами из жести и пропаянными оловом или оловянистым припоем; в пазах сердечников - текстолитовыми клиньями.
Применение стеклобандажей упрощает технологический процесс укладки бандажа, так как не требуется установка соединительных скобочек, подбандажной изоляции, исключается процесс пайки скобочек и стального бандажа. Значительно снижается расход дорогостоящих и дефицитных материалов - олова, стальной проволоки, белой жести, изоляции. Стеклобандаж является хорошим изоляционным материалом, обладает высокой влагостойкостью и надежно защищает лобовые части обмотки от проникновения в их изоляцию влаги и загрязнений.
При ремонте якоря, замене одних деталей другими, а также в случае утери балансировочных грузов может быть ухудшена балансировка якоря. Наличие неуравновешенности при вращении якоря, особенно при высокой частоте, вызывает повышенную вибрацию двигателя. Износы и повреждения узлов тяговых двигателей при повышенных вибрациях резко возрастают. Особенно ухудшаются условия работы якорных подшипников, щеточно-коллекторного узла, изоляции, обмотки якоря, ослабеваю! крепления основных узлов и деталей. Поэтому после ремонта выполняют динамическую балансировку якоря.
Якорь устанавливают на балансировочный станок с опорой на внутренние кольца роликовых подшипников (или на шейки валов под внутренние кольца роликовых подшипников, если они спрессованы), определяют небаланс для каждой стороны якоря отдельно. После определения небаланса с одной стороны и приварки необходимого для его устранения балансировочного груза якорь балансируют с другой стороны. После установки груза на вторую сторону якоря балансировка первой стороны несколько нарушается. Поэтому ее повторно проверяют и при необходимости подправляют. Балансировочные грузы должны закрепляться прочно, утеря грузов или их перемещение недопустимы.

3 ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ РЕМОНТЕ ЭЛЕКТРОМАШИН
1) Слесарь по ремонту ТЭД допускается к работе после медицинского освидетельствования, специального обучения, после инструктажа и последующей проверке знаний, а так же инструктажа на рабочем месте.
2) Приступить к выполнению производственного задания, если известны безопасные способы его выполнения. В случае неясности обратиться к мастеру за распоряжением. При получении новой работы требовать от мастера дополнительного инструктажа по техники безопасности.
3) Находясь на территории завода или депо, цеха, участка – быть внимательным к сигналам, подаваемые водителем транспорта.
4) При работе около электросварки требовать ограждения места сварки.
5) При несчастном случае немедленно обратиться в медпункт, поставив при этом в известность мастера или бригадира.
6) К работе с грузоподъемными механизмами могут быть допущены лица не моложе 18 лет, специально обученные, имеющие удостоверение.
Перед началом работы.
1) Привести в порядок рабочую одежду, застегнуть рукава, подобрать подобрать волосы под плотно облегающий головной убор.
2) Организовать свое рабочее время так, чтобы все необходимое для работы было под руками.
3) Проверить исправность инструмента.
4) На станке проверить зазор между краем подручника и рабочей частью шлифовального круга (не более 3мм).
5) Необходимо убедиться в исправности круга, во время работы станка необходимо стоять сбоку относительно плоскости вращения круга.
Во время работы.
1) Пользоваться исправным инструментом и предусмотренном в тех процессе. 2) При работе на наждачном станке пользоваться защитными очками или защитным экраном.
3) При работе на сверлильном станке: а) не наклоняться близко к сверлу, б) плотно закрепить сверло в патрон, в) сжатые детали удерживать при помощи клещей, г) напряжение переносного электроинструмента должно быть не более 36В.
По окончании работы.
1) Проверить наличие инструмента.
2) Инструмент убрать в шкаф.
3) Привести в порядок рабочее место.
4) Не мыть руки в масле, керосине, не вытирать их обтирочным материалом.
Запрещается.
1) В цехах и на участках проходить по сложенному материалу, детали, а так же под поднятым грузом.
2) Находиться с открытым огнем в близи газовых баллонов и легковоспламеняющихся жидкостей.
3) Включать и останавливать машины, станки, механизмы работа, которая не поручена администрацией.
4) Прикасаться к аппаратам общего освещения и оборванным электропроводом.
5) Наращивать ключи другими предметами.
6) Работать неисправным инструментом.
7) Не курить в цехе, участке, на рабочем месте, курить на специальном оборудованном месте.
8) Соблюдать правила пожарной безопасности.
Наибольшую опасность при осмотре и ремонте электрических машин предоставляет поражения электрическим током пониженного напряжения при шлифовке или обточке коллекторов, сушке изоляции тяговых двигателей током низкого напряжения.
Возможны так же ожоги и травмирования рук при работе на неостывшем двигателе, смене щеткодержателей постановки кронштейнов без применения специального инструмента. Поэтому применяют специальные ключи для смены щеткодержателей и их кронштейнов приспособления с изолированным резцом для коллекторов, колодки с изолированными ручками для шлифовки коллекторов. При осмотре и ремонте необходимо строго выполнять требования техники безопасности. При пропиточных работах и особенно компаундирующих, на ряду с правилами техники безопасности соблюдать так же противопожарные мероприятия. Выполнение работ с деталями из пластмассы, особенно из стекла пластика, требует обязательного соблюдения правил техники безопасности. Стеклянная пыль, стеклопластики, попадая на кожу, вызывает ее раздражение и зуд.
Перед началом работы рекомендуется чистые, сухие руки смазать пастой. Биологические перчатки их просушить на воздухе 5-7 минут. Рабочая одежда должна иметь длинные рукава и глухой воротник.
Во время работы нельзя касаться открытых частей тела руками, загрязненными пылью и эпоксидным компаундом. Остатки компаунда с рук смывают спиртоканифольной смесью и затем моют руки горячей водой с мылом и смазывают глицерином. При испытаниях необходимо исключить возможность соприкосновения с вращающимися частями и особенно касаться токоведущих частей, находящихся под напряжением, кроме того, необходимо обеспечивать выполнение всех требований промышленной санитарии, предъявляемых к помещению, где ремонтируют и испытывают электрические машины.

ЗАКЛЮЧЕНИЕ

В процессе выполнения настоящей работы я хорошо изучил конструкцию и принцип действия тягового электродвигателя ТЛ-2К1, установленного на электровозе ВЛ-10. Я ознакомился с правилами их ремонта, как теоретически, по учебникам, так и практически, во время прохождения слесарной практики. Особое внимание я уделил тому узлу двигателя, который обозначен в теме моей работы – якоря. Я научился безопасным приемам труда, соблюдал меры безопасности при нахождении на железнодорожных путях, правила личной гигиены.
Считаю, что работа над ПЭР и производственная практика помогли мне закрепить теоретические знания, полученные в училище, и подготовиться к самостоятельной работе.

ЛИТЕРАТУРА

1. Правила МПС России от 26.05.2000 № ЦРБ-756 «Правила технической эксплуатации железных дорог Российской Федерации».
2. Алябьев С.А. и др. Устройство и ремонт электровозов постоянного тока. Учебник для технических школ ж.д. транспорта - М., Транспорт, 1977
3. Дубровский З.М. и др. Электровоз. Управление и обслуживание. - М., Транспорт, 1979
4. Красковская С.Н. и др. Текущий ремонт и техническое обслуживание электровозов постоянного тока. - М., Транспорт, 1989
5. Афонин Г.С., Барщенков В.Н., Кондратьев Н.В. Устройство и эксплуатация тормозного оборудования подвижного состава. Учебник для начального профессионального образования. М.: Издательский центр «Академия», 2005.
6. Кикнадзе О.А. Электровозы ВЛ-10 и ВЛ-10у. М.: Транспорт, 1975
7. Охрана труда на железнодорожном транспорте и в транспортном строительстве. Учебник для учащихся техникумов ж.д транспорта. - М., Транспорт, 1983



Поделиться