Формулы на тему движение тела брошенного горизонтально. Полет тела, брошенного под углом к горизонту

Рассмотрим движение тела в поле тяжести Земли, сопротивление воздуха учитывать не будем. Пусть начальная скорость брошенного тела направлена под углом к горизонту $\alpha $ (рис.1). Тело брошено с высоты ${y=h}_0$; $x_0=0$.

Тогда в начальный момент времени тело имеет горизонтальную ($v_x$) и вертикальную ($v_y$) составляющие скорости. Проекции скорости на оси координат при $t=0$ равны:

\[\left\{ \begin{array}{c} v_{0x}=v_0{\cos \alpha ,\ } \\ v_{0y}=v_0{\sin \alpha .\ } \end{array} \right.\left(1\right).\]

Ускорение тела равно ускорению свободного паления и все время направлено вниз:

\[\overline{a}=\overline{g}\left(2\right).\]

Значит, проекция ускорения на ось X равна нулю, а на ось Y равна $a_y=g.$

Так как по оси X составляющая ускорения равна нулю, то скорость движения тела в этом направлении является постоянной величиной и равна проекции начальной скорости на ось X (см.(1)). Движение тела по оси X равномерное.

При ситуации, изображенной на рис.1 тело по оси Y будет двигаться сначала вверх, а затем виз. При этом ускорение движения тела в обоих случаях равно ускорению $\overline{g}.$ На прохождение пути вверх от произвольной высоты ${y=h}_0$ до максимальной высоты подъема ($h$) тело тратит столько же времени, сколько на падение вниз от $h$ до ${y=h}_0$. Следовательно, точки симметричные относительно вершины подъема тела лежат на одинаковой высоте. Получается, что траектория движения тела симметрична относительно точки-вершины подъема - и это парабола.

Скорость движения тела, брошенного под углом к горизонту можно выразить формулой:

\[\overline{v}\left(t\right)={\overline{v}}_0+\overline{g}t\ \left(3\right),\]

где ${\overline{v}}_0$ - скорость тела в момент броска. Формулу (3) можно рассматривать как результат сложения скоростей двух независимых движений по прямым линиям, в которых участвует тело.

Выражения для проекции скорости на оси принимают вид:

\[\left\{ \begin{array}{c} v_x=v_0{\cos \alpha ,\ } \\ v_y=v_0{\sin \alpha -gt\ } \end{array} \left(4\right).\right.\]

Уравнение для перемещения тела при движении в поле тяжести:

\[\overline{s}\left(t\right)={\overline{s}}_0+{\overline{v}}_0t+\frac{\overline{g}t^2}{2}\left(5\right),\]

где ${\overline{s}}_0$ - смещение тела в начальный момент времени.

Проектируя уравнение (5) на оси координат X и Y, получим:

\[\left\{ \begin{array}{c} x=v_0{\cos \left(\alpha \right)\cdot t,\ } \\ y={h_0+v}_0{\sin \left(\alpha \right)\cdot t-\frac{gt^2}{2}\ } \end{array} \left(6\right).\right.\]

Тело, двигаясь вверх, имеет по оси Y сначала равнозамедленное перемещение, после того, как тело достигает вершины, движение по оси Y становится равноускоренным.

Траектория движения материальной точки получается, задана уравнением:

По форме уравнения (7) видно, что траекторией движения является парабола.

Время подъема и полета тела, брошенного под углом к горизонту

Время, затрачиваемое телом для того, чтобы достигнуть максимальной высоты подъема получают из системы уравнений (4). . В вершине траектории тело имеет только горизонтальную составляющую, $v_y=0.$ Время подъема ($t_p$) равно:

Общее время движения тела (время полета ($t_{pol}))$находим из второго уравнения системы (6), зная, что при падении тела на Землю $y=0$, имеем:

Дальность полета и высота подъема тела, брошенного под углом к горизонту

Для нахождения горизонтальной дальности полета тела ($s$) при заданных нами условиях в уравнение координаты $x$ системы уравнений (6) следует подставить время полета ($t_{pol}$) (9). При $h=0,$ дальность полета равна:

Из выражения (9) следует, что при заданной скорости бросания дальность полета максимальна при $\alpha =\frac{\pi }{4}$.

Максимальную высоту подъема тела ($h_{max}$) находят из второго уравнения системы (6), подставляя в него время подъема ($t_p$) (8):

Выражение (11) показывает, что максимальная высота подъема тела прямо пропорциональна квадрату скорости бросания и увеличивается при росте угла бросания.

Примеры задач с решением

Пример 1

Задание. Во сколько раз изменится время полета тела, которое бросили с высоты $h$ в горизонтальном направлении, если скорость бросания тела увеличили в $n$ раз?

Решение. Найдем формулу для вычисления времени полета тела, если его бросили горизонтально (рис.2).

В качестве основы для решения задачи используем выражение для равноускоренного движения тела в поле тяжести:

\[\overline{s}={\overline{s}}_0+{\overline{v}}_0t+\frac{\overline{g}t^2}{2}\left(1.1\right).\]

Используя рис.2 запишем проекции уравнения (1.1) на оси координат:

\[\left\{ \begin{array}{c} X:x=v_0t;; \\ Y:y=h_0-\frac{gt^2}{2} \end{array} \right.\left(1.2\right).\]

Во время падения тела на землю $y=0,$ используем этот факт и выразим время полета из второго уравнения системы (1.2), имеем:

Как мы видим, время полета тела не зависит от его начальной скорости, следовательно, при увеличении начальной скорости в $n$ раз время полета тела не изменится.

Ответ. Не изменится.

Пример 2

Задание. Как изменится дальность полета тела в предыдущей задаче, если начальную скорость увеличить в $n$ раз?

Решение. Дальность полета - это расстояние, которое пройдет тело по горизонтальной оси. Это означает, что нам потребуется уравнение:

из системы (1.2) первого примера. Подставив вместо $t,$ время полета, найденное в (1.3), мы получим дальность полета ($s_{pol}$):

Из формулы (2.2) мы видит, что при заданных условиях движения дальность полета прямо пропорциональна скорости бросания тела, следовательно, во сколько раз увеличим начальную скорость, во столько раз увеличится дальность полета тела.

Ответ. Дальность полета тела увеличится в $n$ раз.

Рассмотрим в качестве примера применения выведенных формул движение тела, брошенного под углом к горизонту в отсутствии сопротивления воздуха. Скажем, на горе, на высоте над уровнем моря стоит пушка, охраняющая прибрежные воды. Пусть снаряд выпускается под углом к горизонту с начальной скоростью из точки , положение которой определяется радиус-вектором (рис. 2.16).

Рис. 2.16. Движение тела, брошенного под углом к горизонту

Дополнение.

Вывод уравнений движения материальной точки в поле силы тяжести

Напишем уравнение движения (уравнение второго закона Ньютона):

это означает, что тела - материальные точки - любых масс при одних и тех же начальных условиях будут двигаться в однородном поле тяжести одинаково. Спроектируем уравнение (2.7.2) на оси декартовой системы координат. Горизонтальная ось ОХ показана на рис. 13 пунктиром, ось OY проведем через точку О вертикально вверх, а горизонтальную ось OZ , также проходящую через точку О , направим перпендикулярно вектору на нас. Получаем:

Вертикальным направлением, по определению, называется направление вектора , поэтому его проекции на горизонтальные оси OX и OY равны нулю. Во втором уравнении учтено, что вектор направлен вниз, а ось OY - вверх.

Рис. 2.17. Движение тела, брошенного под углом к горизонту.

Добавим к уравнениям движения начальные условия, которые определяют положение и скорость тела в начальный момент времени t 0 , пусть t 0 = 0 . Тогда, согласно рис. 2.7.4

Если производная некоторой функции равна нулю, то функция постоянна, соответственно из первого и третьего уравнений (2.7.3) получаем:

Во втором уравнении (2.7.3) производная равна константе, откуда следует, что функция зависит от своего аргумента линейно, то есть

Объединяя (2.7.7) и (2.7.9), получаем окончательные выражения для зависимостей проекций скорости на оси координат от времени:

Третье уравнение (2.7.11) показывает, что траектория тела плоская, целиком лежит в плоскости XOY , это вертикальная плоскость, определяемая векторами и . Очевидно, что последнее утверждение общее: как бы ни были выбраны направления осей координат, траектория тела брошенного под углом к горизонту плоская, она всегда лежит в плоскости, определяемой вектором начальной скорости и вектором ускорения свободного падения .

Если три уравнения (2.7.10) умножить на орты осей , , и и сложить, а потом то же самое проделать с тремя уравнениями (2.7.11), то мы получим зависимости от времени вектора скорости частицы и её радиус вектора. С учетом начальных условий имеем:

Формулы (2.7.12) и (2.7.13) можно было получить сразу, непосредственно из (2.7.2), если учесть, что ускорение свободного падения есть постоянный вектор. Если ускорение - производная от вектора скорости - постоянно, то вектор скорости зависит от времени линейно, а радиус-вектор, производная по времени от которого и есть линейно зависящий от времени вектор скорости, зависит от времени квадратично. Это и записано в соотношениях (2.7.12) и (2.7.13) с константами - постоянными векторами - подобранными соответственно начальным условиям в форме (2.7.4).

Из (2.7.13) в частности видно, что радиус-вектор является суммой трех векторов, складывающихся по обычным правилам, что наглядно показано на рис. 2.18.

Рис. 2.18. Представление радиус-вектора r(t) в произвольный момент времени t в виде суммы трех векторов

Эти векторы представляют собой:

Здесь отчетливо проявляется принцип независимости движений, известный в других областях физики как принцип суперпозиции (наложения). Вообще говоря, согласно принципу суперпозиции результирующий эффект нескольких воздействий представляет собой сумму эффектов от каждого воздействия в отдельности. Он является следствием линейности уравнений движения.

Видео 2.3. Независимость горизонтального и вертикального перемещений при движении в поле тяжести.

Поместим начало отсчета в точку бросания. Теперь =0 , оси, как и ранее, развернем так, чтобы ось 0x была горизонтальной, ось - вертикальной, а начальная скорость лежала в плоскости х0у (рис. 2.19).

Рис. 2.19. Проекции начальной скорости на координатные оси

Спроецируем на оси координат (см.(2.7.11)):

Траектория полета . Если из системы полученных уравнений исключить время t , то получим уравнение траектории:

Это уравнение параболы, ветви которой направлены вниз.

Дальность полета при стрельбе с высоты h . В момент падения тела (снаряд попадает в цель, находящуюся на поверхности моря). Расстояние по горизонтали от пушки до цели равно при этом . Подставляя ; в уравнение траектории, получаем квадратное уравнение для дальности полета :

У квадратного уравнения имеется два решения (в данном случае - положительное и отрицательное). Нам нужно положительное решение. Стандартное выражение для корня квадратного уравнения нашей задачи может быть приведено к виду:

достигается при , если h = 0 .

Максимальная дальность полета . При выстреле с горы высотой это уже не так. Найдем угол , при котором достигается максимальная дальность полета. Зависимость дальности полета от угла достаточно сложна, и вместо дифференцирования для нахождения максимума мы поступим следующим образом. Представим себе, что мы увеличиваем начальный угол . Сначала дальность полета растет (см. формулу (2.7.15)), достигает максимального значения и снова начинает падать (до нуля при выстреле вертикально вверх). Таким образом, для каждой дальности полета, кроме максимальной, соответсвует два направления начальной скорости.

Обратимся снова к квадратному уравнению относительности дальности полета и рассмотрим его как уравнение для угла . Учитывая, что

перепишем его в виде:

Мы снова получили квадратное уравнение, на этот раз - для неизвестной величины . Уравнение имеет два корня, что соответствует двум углам, при которых дальность полета равна . Но когда , оба корня должны совпасть. Это означает, что равен нулю дискриминант квадратного уравнения:

откуда следует результат

При этот результат воспроизводит формулу (2.7.16)

Обычно высота много меньше дальности полета на равнине. При квадратный корень может быть аппроксимирован первыми членами разложения в ряд Тейлора и мы получаем приближенное выражение

то есть дальность выстрела увеличивается примерно на высоту подъема пушки.

Когда l = l max , и a = a max , как уже отмечалось, дискриминант квадратного уравнения равен нулю, соответственно, его решение имеет вид:

Поскольку тангенс меньше единицы, угол, при котором достигается максимальная дальность полета, меньше .

Максимальная высота подъёма над начальной точкой. Эта величина может быть определена из равенства нулю вертикальной составляющей скорости в верхней точке траектории

При этом горизонтальная составляющая скорости не равна нулю, поэтому

Кинематика - это просто!


После броска, в полете, на тело действуют сила тяжести и сила сопротивления воздуха .
Если движение тела происходит на малых скоростях, то при расчете силу сопротивления воздуха обычно не учитывают.
Итак, можно считать, что на тело действует только сила тяжести, значит движение брошенного тела является свободным падением .
Если это свободное падение, то ускорение брошенного тела равно ускорению свободного падения g .
На малых высотах относительно поверхности Земли сила тяжести Fт практически не меняется, поэтому тело движется с постоянным ускорением.

Итак, движение тела, брошенного под углом к горизонту является вариантом свободного падения, т.е. движением с постоянным ускорением и криволинейной траекторией (т.к. векторы скорости и ускорения не совпадают по направлению).

Формулы этого движения в векторном виде: Для расчета движения тела выбирают прямоугольную систему координат XOY, т.к. траекторией движения тела является парабола, лежащая в плоскости, проходящей через векторы Fт и Vo .
За начало координат обычно выбирают точку начала движения брошенного тела.


В любой момент времени изменение скорости движения тела по направлению совпадает с ускорением.

Вектор скорости тела в любой точке траектории можно разложить на 2 составляющих: вектор V x и вектор V y .
В любой момент времени скорость тела будет определяться, как геометрическая сумма этих векторов:

Согласно рисунку, проекции вектора скорости на координатные оси OX и OY выглядят так:


Расчет скорости тела в любой момент времени:

Расчет перемещения тела в любой момент времени:

Каждой точке траектории движения тела соответствуют координаты X и Y:


Расчетные формулы для координат брошенного тела в любой момент времени:


Из уравнения движения можно вывести формулы для расчета максимальной дальности полета L:

и максимальной высоты полета Н:


P.S.
1. При равных по величине начальных скоростях Vo дальность полета:
- возрастает, если начальный угол бросания увеличивать от 0 o до 45 o ,
- убывает, если начальный угол бросания увеличивать от 45 o до 90 o .

2. При равных начальных углах бросания дальность полета L возрастает с увеличением начальной скорости Vo.

3. Частным случаем движения тела, брошенного под углом к горизонту, является движение тела, брошенного горизонтально , при этом начальный угол бросания равен нулю.

Когда изучают механическое движение в физике, то после ознакомления с равномерным и равноускоренным перемещением объектов, переходят к рассмотрению движения тела под углом к горизонту. В данной статье изучим подробнее этот вопрос.

Что собой представляет движение тела под углом к горизонту?

Этот тип перемещения объектов возникает, когда человек бросает камень в воздух, пушка совершает выстрел ядром, или вратарь выбивает от ворот футбольный мяч. Все подобные случаи рассматриваются наукой баллистикой.

Отмеченный вид перемещения объектов в воздухе происходит по параболической траектории. В общем случае проведение соответствующих расчетов является делом не простым, поскольку необходимо учитывать сопротивление воздуха, вращение тела во время полета, вращение Земли вокруг оси и некоторые другие факторы.

В данной статье мы не будем учитывать все эти факторы, а рассмотрим вопрос с чисто теоретической точки зрения. Тем не менее, полученные формулы достаточно хорошо описывают траектории тел, перемещающихся на небольшие расстояния.

Получение формул для рассматриваемого вида движения

Выведем тела к горизонту под углом. При этом будем учитывать только одну-единственную силу, действующую на летящий объект - силу тяжести. Поскольку она действует вертикально вниз (параллельно оси y и против нее), то, рассматривая горизонтальную и вертикальную составляющие движения, можно сказать, что первая будет иметь характер равномерного прямолинейного перемещения. А вторая - равнозамедленного (равноускоренного) прямолинейного перемещения с ускорением g. То есть, компоненты скорости через значение v 0 (начальная скорость) и θ (угол направления движения тела) запишутся так:

v x = v 0 *cos(θ)

v y = v 0 *sin(θ)-g*t

Первая формула (для v x) справедлива всегда. Что касается второй, то тут нужно отметить один нюанс: знак минус перед произведением g*t ставится только в том случае, если вертикальная компонента v 0 *sin(θ) направлена вверх. В большинстве случаев так и происходит, однако, если бросить тело с высоты, направив его вниз, тогда в выражении для v y следует поставить знак "+" перед g*t.

Проинтегрировав формулы для компонент скорости по времени, и учитывая начальную высоту h полета тела, получаем уравнения для координат:

x = v 0 *cos(θ)*t

y = h+v 0 *sin(θ)*t-g*t 2 /2

Вычисление дальности полета

При рассмотрении в физике движения тела к горизонту под углом, полезным для практического применения, оказывается расчет дальности полета. Определим ее.

Поскольку это перемещение представляет собой равномерное движения без ускорения, то достаточно подставить в него время полета и получить необходимый результат. Дальность полета определяется исключительно перемещением вдоль оси x (параллельно горизонту).

Время нахождения тела в воздухе можно вычислить, приравняв к нулю координату y. Имеем:

0 = h+v 0 *sin(θ)*t-g*t 2 /2

Это квадратное уравнение решаем через дискриминант, получаем:

D = b 2 - 4*a*c = v 0 2 *sin 2 (θ) - 4*(-g/2)*h = v 0 2 *sin 2 (θ) + 2*g*h,

t = (-b±√D)/(2*a) = (-v 0 *sin(θ)±√(v 0 2 *sin 2 (θ) + 2*g*h))/(-2*g/2) =

= (v 0 *sin(θ)+√(v 0 2 *sin 2 (θ) + 2*g*h))/g.

В последнем выражении один корень со знаком минуса отброшен, в виду его незначительного физического значения. Подставив время полета t в выражение для x, получаем дальность полета l:

l = x = v 0 *cos(θ)*(v 0 *sin(θ)+√(v 0 2 *sin 2 (θ) + 2*g*h))/g.

Проще всего это выражение проанализировать, если начальная высота равна нулю (h=0), тогда получим простую формулу:

l = v 0 2 *sin(2*θ)/g

Это выражение свидетельствует, что максимальную дальность полета можно получить, если тело бросить под углом 45 o (sin(2*45 o) = м1).

Максимальная высота подъема тела

Помимо дальности полета, также полезно найти высоту над землей, на которую может подняться тело. Поскольку этот тип движения описывается параболой, ветви которой направлены вниз, то максимальная высота подъема является ее экстремумом. Последний рассчитывается путем решения уравнения для производной по t для y:

dy/dt = d(h+v 0 *sin(θ)*t-g*t 2 /2)/dt = v 0 *sin(θ)-gt=0 =>

=> t = v 0 *sin(θ)/g.

Подставляем это время в уравнение для y, получаем:

y = h+v 0 *sin(θ)*v 0 *sin(θ)/g-g*(v 0 *sin(θ)/g) 2 /2 = h + v 0 2 *sin 2 (θ)/(2*g).

Это выражение свидетельствует, что на максимальную высоту тело поднимется, если его бросить вертикально вверх (sin 2 (90 o) = 1).

Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила -- сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения; проекции ускорения на координатные оси ах = 0, ау = - g.

Рисунок 1. Кинематические характеристики тела, брошенного под углом к горизонту

Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

Проекции скорости тела, следовательно, изменяются со временем следующим образом:

где $v_0$ - начальная скорость, ${\mathbf \alpha }$ - угол бросания.

При нашем выборе начала координат начальные координаты (рис. 1) $x_0=y_0=0$. Тогда получим:

(1)

Проанализируем формулы (1). Определим время движения брошенного тела. Для этого положим координату y равной нулю, т.к. в момент приземления высота тела равна нулю. Отсюда получаем для времени полета:

Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

Дальность полета получим из первой формулы (1). Дальность полета - это значение координаты х в конце полета, т.е. в момент времени, равный $t_0$. Подставляя значение (2) в первую формулу (1), получаем:

Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

Из уравнений (1) можно получить уравнение траектории тела, т.е. уравнение, связывающее координаты х и у тела во время движения. Для этого нужно из первого уравнения (1) выразить время:

и подставить его во второе уравнение. Тогда получим:

Это уравнение является уравнением траектории движения. Видно, что это уравнение параболы, расположенной ветвями вниз, о чем говорит знак «-» перед квадратичным слагаемым. Следует иметь в виду, что угол бросания $\alpha $ и его функции -- здесь просто константы, т.е. постоянные числа.

Тело брошено со скоростью v0 под углом ${\mathbf \alpha }$ к горизонту. Время полета $t = 2 с$. На какую высоту Hmax поднимется тело?

$$t_В = 2 с$$ $$H_max - ?$$

Закон движения тела имеет вид:

$$\left\{ \begin{array}{c} x=v_{0x}t \\ y=v_{0y}t-\frac{gt^2}{2} \end{array} \right.$$

Вектор начальной скорости образует с осью ОХ угол ${\mathbf \alpha }$. Следовательно,

\ \ \

С вершины горы бросают под углом = 30${}^\circ$ к горизонту камень с начальной скоростью $v_0 = 6 м/с$. Угол наклонной плоскости = 30${}^\circ$. На каком расстоянии от точки бросания упадет камень?

$$ \alpha =30{}^\circ$$ $$v_0=6\ м/с$$ $$S - ?$$

Поместим начало координат в точку бросания, ОХ -- вдоль наклонной плоскости вниз, OY -- перпендикулярно наклонной плоскости вверх. Кинематические характеристики движения:

Закон движения:

$$\left\{ \begin{array}{c} x=v_0t{cos 2\alpha +g\frac{t^2}{2}{sin \alpha \ }\ } \\ y=v_0t{sin 2\alpha \ }-\frac{gt^2}{2}{cos \alpha \ } \end{array} \right.$$ \

Подставив полученное значение $t_В$, найдём $S$:



Поделиться