Продольные и поперечные деформации закон гука. Продольная и поперечная деформация

9. Абсолютная и относительная деформация при растяжении (сжатии). Коэффициент Пуассона.

Если под действием силы брус длиной изменил свою продольную величину на , то эта величина называется абсолютной продольной деформацией (абсолютное удлинение или укорочение). При этом наблюдается и поперечная абсолютная деформация .

Отношение называется относительной продольной деформацией, а отношение - относительной поперечной деформацией.

Отношение называется коэффициентом Пуассона, который характеризует упругие свойства материала.

Коэффициент Пуассона имеет значение . (для стали он равен )

10. Сформулировать закон Гука при растяжении (сжатии).

I форма. В поперечных сечениях бруса при центральном растяжении (сжатии) нормальные напряжения равны отношению продольной силы к площади поперечного сечения:

II форма. Относительная продольная деформация прямо пропорциональна нормальному напряжению , откуда .

11. Как определяются напряжения в поперечных и наклонных сечениях бруса?

– сила, равная произведению напряжения на площадь наклонного сечения :

12. По какой формуле можно определить абсолютное удлинение (укорочение) бруса?

Абсолютное удлинение (укорочение) бруса (стержня) выражается формулой:

, т.е.

Учитывая, что величина представляет собой жесткость поперечного сечения бруса длиной можно сделать вывод: абсолютная продольная деформация прямо пропорциональна продольной силе и обратно пропорциональна жесткости поперечного сечения. Этот закон впервые сформулировал Гук в 1660 году.

13. Как определяются температурные деформации и напряжения?

При повышении температуры у большинства материалов механические характеристики прочности уменьшаются, а при понижении температуры – увеличиваются. Например, у стали марки Ст3 при и ;

при и , т.е. .

Удлинение стержня при нагревании определяется по формуле , где - коэффициент линейного расширения материала стержня, - длина стержня.

Возникающее в поперечном сечении нормальное напряжение . При понижении температуры происходит укорочение стержня и возникают напряжения сжатия.

14. Дать характеристику диаграммы растяжения (сжатия).

Механические характеристики материалов определяются путем испытаний образцов и построением соответствующих графиков, диаграмм. Наиболее распространенным является статическое испытание на растяжение (сжатие).

Предел пропорциональности (до этого предела справедлив закон Гука);

Предел текучести материала;

Предел прочности материала;

Разрушающее (условное) напряжение;

Точка 5 соответствует истинному разрушающему напряжению.

1-2 площадка текучести материала;

2-3 зона упрочнения материала;

и - величина пластической и упругой деформации.

Модуль упругости при растяжении (сжатии), определяемый как: , т.е. .

15. Какие параметры характеризуют степень пластичности материала?

Степень пластичности материала может быть охарактеризовано величинами:

Остаточным относительным удлинением – как отношение остаточной деформации образца к первоначальной его длине:

где - длина образца после разрыва. Величина для различных марок стали находится в пределах от 8 до 28 %;

Остаточным относительным сужением – как отношение площади поперечного сечения образца в месте разрыва к первоначальной площади:

где - площадь поперечного сечения разорванного образца в наиболее тонком месте шейки. Величина находится в пределах от нескольких процентов для хрупкой высокоуглеродистой стали до 60 % для малоуглеродистой стали.

16. Задачи, решаемые при расчете на прочность при растяжении (сжатии).

Напряжения и деформации при растяжении и сжатии связаны между собой линейной зависимостью, которая называется законом Гука , по имени английского физика Р. Гука (1653-1703 г.г.), установившего этот закон.
Сформулировать закон Гука можно так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению .

Математически эта зависимость записывается так:

σ = E ε .

Здесь Е – коэффициент пропорциональности, который характеризует жесткость материала бруса, т. е. его способность сопротивляться деформации; его называют модулем продольной упругости , или модулем упругости первого рода .
Модуль упругости, как и напряжение, выражаются в паскалях (Па) .

Значения Е для различных материалов устанавливаются экспериментально-опытным путем, и их величину можно найти в соответствующих справочниках.
Так, для стали Е = (1,96.…2,16) х 105 МПа, для меди Е = (1,00...1,30) х 105 МПа и т. д.

Следует оговориться, что закон Гука справедлив лишь в определенных пределах нагружения.
Если в формулу закона Гука подставить полученные ранее значения относительного удлинения и напряжения: ε = Δl / l , σ = N / А , то можно получить следующую зависимость:

Δl = N l / (E А) .

Произведение модуля упругости на площадь сечения Е ×А , стоящее в знаменателе, называют жесткостью сечения при растяжении и сжатии; оно характеризует одновременно и физико-механические свойства материала бруса и геометрические размеры поперечного сечения этого бруса.

Приведенную выше формулу можно читать так: абсолютное удлинение или укорочение бруса прямо пропорционально продольной силе и длине бруса, и обратно пропорционально жесткости сечения бруса.
Выражение Е А / l называют жесткостью бруса при растяжении и сжатии .

Приведенные выше формулы закона Гука справедливы лишь для брусьев и их участков, имеющих постоянное поперечное сечение, изготовленных из одного материала и при постоянной силе. Для бруса, имеющего несколько участков, отличающихся материалом, размерами сечения, продольной силой, изменение длины всего бруса определяется, как алгебраическая сумма удлинений или укорочений отдельных участков:



Δl = Σ (Δl i)

Деформация

Деформация (англ. deformation ) - это изменение формы и размеров тела (или части тела) под действием внешних сил, при изменении температуры, влажности, фазовых превращениях и других воздействиях, вызывающих изменение положения частиц тела. При увеличении напряжения деформация может закончиться разрушением. Способность материалов сопротивляться деформации и разрушению под воздейстивем различного вида нагрузок характеризуется механическими свойствами этих материалов.

На появление того или иного вида деформации большое влияние оказывает характер приложенных к телу напряжений. Одни процессы деформации связаны с преобладающим действием касательной составляющей напряжения, другие - с действием его нормальной составляющей.

Виды деформации

По характеру приложенной к телу нагрузки виды деформации подразделяют следующим образом:

  • Деформация растяжения;
  • Деформация сжатия;
  • Деформация сдвига (или среза);
  • Деформация при кручении;
  • Деформация при изгибе.

К простейшим видам деформации относятся: деформация растяжения, деформация сжатия, деформация сдвига. Выделяют также следующие виды деформации: деформация всестороннего сжатия, кручения, изгиба, которые представляют собой различные комбинации простейших видов деформации (сдвиг, сжатие, растяжение), так как сила приложенная к телу, подвергаемому деформации, обычно не перпендикулярна его поверхности, а направлена под углом, что вызывает как нормальные, так и касательные напряжения. Изучением видов деформации занимаются такие науки, как физика твёрдого тела, материаловедение, кристаллография.

В твёрдых телах, в частности - металлах, выделяют два основных вида деформаций - упругую и пластическую деформацию, физическая сущность которых различна.

Сдвигом называют такой вид деформации, когда в поперечных сечениях возникают только перерезывающие силы . Такое напряженное состояние соответствует действию на стержень двух равных противоположно направленных и бесконечно близко расположенных поперечных сил (рис. 2.13, а, б ), вызывающих срез по плоскости, расположенной между силами.

Рис. 2.13. Деформация и напряжения при сдвиге

Срезу предшествует деформация – искажение прямого угла между двумя взаимно-перпендикулярными линиями. При этом на гранях выделенного элемента (рис. 2.13, в ) возникают касательные напряжения. Величина смещения граней называется абсолютным сдвигом . Значение абсолютного сдвига зависит от расстояния h между плоскостями действия сил F . Более полно деформацию сдвига характеризует угол , на который изменяются прямые углы элемента – относительный сдвиг:

. (2.27)

Используя ранее рассмотренный метод сечений, легко убедиться, что на боковых гранях выделенного элемента возникают только перерезывающие силыQ=F , являющиеся равнодействующими касательных напряжений:

Принимая во внимание, что касательные напряжения распределены равномерно по поперечному сечению А , их значение определяется соотношением:

. (2.29)

Экспериментально установлено, что в пределах упругих деформаций величина касательных напряжений пропорциональна относительному сдвигу (закон Гука при сдвиге):

где G – модуль упругости при сдвиге (модуль упругости второго рода).

Между модулями продольной упругости и сдвига существует взаимосвязь

,

где – коэффициент Пуассона.

Приближенные значения модуля упругости при сдвиге, МПа: сталь – 0,8·10 5 ; чугун – 0,45·10 5 ; медь – 0,4·10 4 ; алюминий – 0,26·10 5 ; резина – 4.

2.4.1.1. Расчеты на прочность при сдвиге

Чистый сдвиг в реальных конструкциях реализовать крайне сложно, так как вследствие деформации соединяемых элементов происходит дополнительный изгиб стержня, даже при сравнительно небольшом расстоянии между плоскостями действия сил. Однако в ряде конструкций нормальные напряжения в сечениях малы и ими можно пренебречь. В этом случае условие прочностной надежности детали имеет вид:

, (2.31)

где – допускаемые напряжение на срез, которые обычно назначают в зависимости от величины допускаемого напряжения при растяжении:

– для пластичных материалов при статической нагрузке =(0,5…0,6) ;

– для хрупких – =(0,7 … 1,0) .

2.4.1.2. Расчеты на жесткость при сдвиге

Они сводятся к ограничению упругих деформаций. Решая совместно выражение (2.27)–(2.30), определяют величину абсолютного сдвига:

, (2.32)

где – жесткость при сдвиге.

Кручение

2.4.2.1. Построение эпюр крутящих моментов

2.4.2.2. Деформации при кручении

2.4.2.4. Геометрические характеристики сечений

2.4.2.5. Расчеты на прочность и жесткость при кручении

Кручением называют такой вид деформации, когда в поперечных сечениях возникает единственный силовой фактор – крутящий момент .

Деформация кручения происходит при нагружении бруса парами сил, плоскости действия которых перпендикулярны к его продольной оси.

2.4.2.1. Построение эпюр крутящих моментов

Для определения напряжений и деформаций бруса строят эпюру крутящих моментов, показывающую распределение крутящих моментов по длине бруса. Применив метод сечений и рассмотрев в равновесии любую часть, станет очевидно, что момент внутренних сил упругости (крутящий момент ) должен уравновесить действие внешних (вращающих) моментов на рассматриваемую часть бруса. Принято момент считать положительным, если наблюдатель смотрит на рассматриваемое сечение со стороны внешней нормали и видит вращающий момент Т , направленным против хода движения часовой стрелки. При противоположном направлении моменту приписывается знак минус.

Например, условие равновесия для левой части бруса имеет вид (рис. 2.14):

– в сечении А-А:

– в сечении Б-Б :

.

Границами участков при построении эпюры являются плоскости действия вращающих моментов .

Рис. 2.14. Расчетная схема бруса (вала) при кручении

2.4.2.2. Деформации при кручении

Если на боковую поверхность стержня круглого поперечного сечения нанести сетку (рис. 2.15, а ) из равноотстоящих окружностей и образующих, а к свободным концам приложить пары сил с моментами Т в плоскостях, перпендикулярных к оси стержня, то при малой деформации (рис. 2.15, б ) можно обнаружить:

Рис. 2.15. Схема деформации при кручении

· образующие цилиндра превращаются в винтовые линии большого шага;

· квадраты, образованные сеткой, превращаются в ромбы, т.е. происходит сдвиг поперечных сечений;

· сечения, круглые и плоские до деформации, сохраняют свою форму и после деформации;

· расстояние между поперечными сечениями практически не изменяется;

· происходит поворот одного сечения относительно другого на некоторый угол.

На основании этих наблюдений теория кручения бруса основана на следующих допущениях:

· поперечные сечения бруса, плоские и нормальные к его оси до деформации, остаются плоскими и нормальными к оси и после деформации;

· равноотстоящие поперечные сечения поворачиваются относительно друг друга на равные углы;

· радиусы поперечных сечений в процессе деформации не искривляются;

· в поперечных сечениях возникают только касательные напряжения. Нормальные напряжения малы. Длину бруса можно считать неизменной;

· материал бруса при деформации подчиняется закону Гука при сдвиге: .

В соответствии с этими гипотезами кручение стержня круглого поперечного сечения представляют как результат сдвигов, вызванных взаимным поворотом сечений.

На стержне круглого поперечного сечения радиусом r , заделанным одним концом и нагруженным вращающим моментом Т на другом конце (рис. 2.16, а ), обозначим на боковой поверхности образующую АD , которая под действием момента займет положение АD 1 . На расстоянии Z от заделки выделим элемент длиной dZ . Левый торец этого элемента в результате кручения повернется на угол , а правый – на угол (). Образующая ВС элемента займет положениеВ 1 С 1 , отклонившись от исходного положения на угол . В силу малости этого угла

Отношение представляет угол закручивания единицы длины стержня и называется относительным углом закручивания . Тогда

Рис. 2.16. Расчетная схема определения напряжений
при кручении стержня круглого поперечного сечения

Принимая во внимание (2.33), закон Гука при кручении можно описать выражением:

. (2.34)

В силу гипотезы, что радиусы круглых поперечных сечений не искривляются, касательные напряжения сдвига в окрестностях любой точки тела, находящейся на расстоянии от центра (рис. 2.16, б ), равны произведению

т.е. пропорциональны расстоянию ее до оси.

Значение относительного угла закручивания по формуле (2.35) может быть найдено из условия, что элементарная окружная сила () на элементарной площадке размером dA , расположенной на расстоянии от оси бруса, создает относительно оси элементарный момент (рис. 2.16, б ):

Сумма элементарных моментов, действующих по всему поперечному сечению А , равна крутящему моменту М Z . Считая, что :

.

Интеграл представляет собой чисто геометрическую характеристику и носит название полярного момента инерции сечения .

Рассмотрим прямой брус постоянного сечения длиной l, заделанный одним концом и нагруженный на другом конце растягивающей силой Р (рис. 2.9, а). Под действием силы Р брус удлиняется на некоторую величину?l, которая называется полным, или абсолютным, удлинением (абсолютной продольной деформацией).

В любых точках рассматриваемого бруса имеется одинаковое напряженное состояние, и, следовательно, линейные деформации для всех его точек одинаковы. Поэтому значение можно определить как отношение абсолютного удлинения?l к первоначальной длине бруса l, т.е. . Линейную деформацию при растяжении или сжатии брусьев называют обычно относительным удлинением, или относительной продольной деформацией, и обозначают

Следовательно,

Относительная продольная деформация измеряется в отвлеченных единицах. Деформацию удлинения условимся считать положительной (рис. 2.9, а), а деформацию сжатия - отрицательной (рис. 2.9, б).

Чем больше величина силы, растягивающей брус, тем больше, при прочих равных условиях, удлинение бруса; чем больше площадь поперечного сечения бруса, тем удлинение бруса меньше. Брусья из различных материалов удлиняются различно. Для случаев, когда напряжения в брусе не превышают предела пропорциональности, опытом установлена следующая зависимость:

Здесь N - продольная сила в поперечных сечениях бруса;

F - площадь поперечного сечения бруса;

Е - коэффициент, зависящий от физических свойств материала.

Учитывая, что нормальное напряжение в поперечном сечении бруса получаем

Абсолютное удлинение бруса выражается формулой

т.е. абсолютная продольная деформация прямо пропорциональна продольной силе.

Впервые закон о прямой пропорциональности между силами и деформациями сформулировал Р. Гук (в 1660 г.).

Более общей является следующая формулировка закона Гука относительная продольная деформация прямо пропорциональна нормальному напряжению. В такой формулировке закон Гука используется не только при изучении растяжения и сжатия брусьев, но и в других разделах курса.

Величина Е, входящая в формулы, называется модулем продольной упругости (сокращенно - модулем упругости). Эта величина - физическая постоянная материала, характеризующая его жесткость. Чем больше значение Е, тем меньше, при прочих равных условиях, продольная деформации.

Произведение EF называется жесткостью поперечного сечения бруса при растяжении и сжатии.

Если поперечный размер бруса до приложения к нему сжимающих сил Р обозначить b, а после приложения этих сил b+?b (рис. 9.2), то величина?b будет обозначать абсолютную поперечную деформацию бруса. Отношение является относительной поперечной деформацией.

Опыт показывает, что при напряжениях, не превышающих предела упругости, относительная поперечная деформацией прямо пропорциональна относительной продольной деформации е, но имеет обратный знак:

Коэффициент пропорциональности в формуле (2.16) зависит от материала бруса. Он называется коэффициентом поперечной деформации, или коэффициентом Пуассона, и представляет собой отношение поперечной деформации к продольной, взятое по абсолютной величине, т.е.

Коэффициент Пуассона, наряду с модулем упругости Е, характеризует упругие свойства материала.

Величина коэффициента Пуассона определяется экспериментально. Для различных материалов она имеет значения от нуля (для пробки) до величины, близкой к 0,50 (для резины и парафина). Для стали коэффициент Пуассона равен 0,25-0,30; для ряда других метало (чугуна, цинка, бронзы, меди) он имеет значения от 0,23 до 0,36.

Таблица 2.1 Значения модуля упругости.

Таблица 2.2 Значения коэффициента поперечной деформации (коэффициент Пуассона)

Изменение размеров, объема и возможно формы тела, при внешнем воздействии на него, называют в физике деформацией. Тело деформируется при растяжении, сжатии или (и), при изменении его температуры.

Деформация появляется тогда, когда разные части тела совершают разные перемещения. Так, например, если резиновый шнур тянуть за концы, то разные его части сместятся относительно друг друга, и шнур окажется деформированным (растянется, удлинится). При деформации изменяются расстояния между атомами или молекулами тел, поэтому возникают силы упругости.

Пусть прямой брус, длиной и, имеющий постоянное сечение, закреплен одним концом. За другой конец его растягивают, прикладывая силу (рис.1). При этом тело удлиняется на величину , которую называют абсолютным удлинением (или абсолютной продольной деформацией).

В любой точке рассматриваемого тела имеется одинаковое напряженное состояние. Линейную деформацию () при растяжении и сжатии подобных объектов называют относительным удлинением (относительной продольной деформацией):

Относительная продольная деформация

Относительная продольная деформация - величина безразмерная. Как правило относительное удлинение много меньше единицы ().

Деформацию удлинения обычно считают положительной, а деформацию сжатия отрицательной.

Если напряжение в брусе не превышает некоторого предела, экспериментально установлена зависимость:

где - продольная сила в поперечных сечениях бруса; S - площадь поперечного сечения бруса; E - модуль упругости (модуль Юнга) - физическая величина, характеристика жёсткости материала. Принимая о внимание то, что нормальное напряжение в поперечном сечении ():

Абсолютное удлинение бруса можно выразить как:

Выражение (5) является математической записью закона Р. Гука, который отражает прямую зависимость между силой и деформацией при небольших нагрузках.

В следующей формулировке, закон Гука используется не только при рассмотрении растяжения (сжатия) бруса: Относительная продольная деформация прямо пропорциональна нормальному напряжению.

Относительная деформация при сдвиге

При сдвиге относительную деформацию характеризуют при помощи формулы:

где - относительный сдвиг; - абсолютный сдвиг слоев параллельных по отношению друг к другу; h — расстояние между слоями; - угол сдвига.

Закон Гука для сдвига записывают как:

где G - модуль сдвига, F - сила, вызывающая сдвиг, параллельная сдвигающимся слоям тела.

Примеры решения задач

ПРИМЕР 1

Задание Каково относительное удлинение стального стержня, если его верхний конец закреплен неподвижно (рис.2)? Площадь поперечного сечения стержня . К нижнему концу стержня прикреплен груз массой кг. Считайте, что собственная масса стержня много меньше, чем масса груза.

Решение Сила, которая заставляет стержень растягиваться, равна силе тяжести груза, который находится на нижнем конце стержня. Эта сила действует вдоль оси стержня. Относительное удлинение стержня найдем как:

где . Прежде чем проводить расчет, следует найти в справочниках модуль Юнга для стали. Па.

Ответ

ПРИМЕР 2

Задание Нижнее основание металлического параллелепипеда с основанием в виде квадрата со стороной a и высотой h закреплено неподвижно. На верхнее основание параллельно основанию действует сила F (рис.3). Какова относительная деформация сдвига ()? Модуль сдвига (G) считайте известным.

Иметь представление о продольных и поперечных деформациях и их связи.

Знать закон Гука, зависимости и формулы для расчета на­пряжений и перемещений.

Уметь проводить расчеты на прочность и жесткость ста­тически определимых брусьев при растяжении и сжатии.

Деформации при растяжении и сжатии

Рассмотрим деформацию бруса под действием продольной силы F (рис. 4.13).

Начальные размеры бруса: - начальная длина, - начальная ширина. Брус удлиняется на величину Δl; Δ1 - абсолютное удлинение. При растя­жении поперечные размеры уменьшают­ся, Δ а - абсолютное сужение; Δ1 > 0; Δ а <0.

При сжатии выполняется соотноше­ние Δl < 0; Δ а > 0.

В сопротивлении материалов приня­то рассчитывать деформации в относи­тельных единицах: рис.4.13

Относительное удлинение;

Относительное сужение.

Между продольной и поперечной деформациями существует зависимость ε′=με, где μ – коэффициент поперечной деформации, или коэффициент Пуассона, - характеристика пластичности материала.

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. введение.. любое явление в ок ружающем нас макромире связано с движением следовательно не может не иметь того или иного..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Аксиомы статики
Условия, при которых тело может находиться в равновесии, выводиться из нескольких основных положений, применяемых без доказательств, но подтвержденных опытом и называемых аксиомами статики.

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободным называется тело, которое не испыты

Определение равнодействующей геометрическим способом
Знать геометрический способ определения равнодействующей системы сил, условия равновесия плоской системы сходящихся сил.

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (рис. 1.13).

Проекция силы на ось
Проекция силы на ось определяется отрезком оси, отсекаемым перпендикулярами, опущенными на ось из начала и конца вектора (рис. 1.15).

Определение равнодействующей системы сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Условия равновесия плоской системы сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: FΣ

Методика решения задач
Решение каждой задачи можно условно разделить на три этапа. Первый этап: Отбрасываем внешние связи системы тел, равновесие которой рассматривается, и заменяем их действие реакциями. Необхо

Пара сил и момент силы относительно точки
Знать обозначение, модуль и определение моментов пары сил и силы относительно точки, условия равновесия системы пар сил. Уметь определять моменты пар сил и момент силы относитель

Эквивалентность пар
Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой парой механическое состояние тела не изменяется, т. е. не изменяется движение тела или не нару­шается его

Опоры и опорные реакции балок
Правило для определения направления реакций связей (рис.1.22). Шарнирно-подвижная опора допускает поворот вокруг оси шарнира и линейное перемещение параллельно опорной плос­кости.

Приведение силы к точке
Произвольная плоская система сил представляет собой систему сил, линии действия которых расположены в плоскости каким угодно образом (рис. 1.23). Возьмем силу

Приведение плоской системы сил к данной точке
Метод приведения одной силы к данной точке можно применить к какому угодно числу сил. Допустим, ч

Влияние точки приведения
Точка приведения выбрана произвольно. Произвольная плоская система сил представляет собой систему сил, линия действия которых расположены в плоскости каким угодно образом. При изменении по

Теорема о моменте равнодействующей (теорема Вариньона)
В общем случае произвольная плоская система сил приводится к главному вектору F"гл и к главному моменту Мгл относительно выбранного центра приведения, причем гла

Условие равновесия произвольно плоской системы сил
1)При равновесии главный вектор системы равен нулю (=0).

Балочные системы. Определение реакций опор и моментов защемления
Иметь представление о видах опор и возникающих реакциях в опорах. Знать три формы уравнений равновесия и уметь их использовать для определения реакций в опорах балочных систем.

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно точки
Момент силы относительно оси характеризуется вра­щательным эффектом, создаваемым силой, стремящейся повернуть тело вокруг данной оси. Пусть к телу в про­извольной точке К приложена сила

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 1.3

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Некоторые определения теории механизмов и машин
При дальнейшем изучении предмета теоретической ме­ханики, в особенности при решении задач, мы столкнемся с но­выми понятиями, относящимися к науке, которая называется теорией механизмов и машин.

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлени

Ускорение точки при криволинейном движении
При движении точки по криволинейном траектории скорость меняет свое направление. Представим себе точку М, которая за время Δt, двигаясь по криволинейной траектории, переместилас

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 2.9, а)

Неравномерное движение
При неравномерном движении численные значения скорости и ускорения меняются. Уравнение неравномерного движения в общем виде представля­ет собой уравнение третьей S = f

Простейшие движения твердого тела
Иметь представление о поступательном движении, его особенности и параметрах, о вращательном движении тела и его параметрах. Знать формулы для определения параметров поступательно

Вращательное движение
Движение, при котором по крайнем мере точки твердого тела или неизменяемой системы остаются неподвижными, называемыми вращательным; прямая линия, соединяющая эти две точки,

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω = const. Уравнение (закон) равномерного вращения в данном случае име­ет вид: `

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки Л, расположенной на расстоянии г а от оси вращения (рис. 11.6, 11.7).

Преобразование вращательного движения
Преобразование вращательного движения осуществля­ется разнообразными механизмами, которые называются пере­дачами. Наиболее распространенными являются зубчатые и фрикционные передачи, а также

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Метод определения мгновенного центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Понятие трения
Абсолютно гладких и абсолютно твердых тел в природе не существует, и поэтому при перемещении одного тела по по­верхности другого возникает сопротивление, которое называется трением.

Трение скольжения
Трением скольжения называется трение движения, при котором скорости тел в точке касания различны по значению и (или) направлению. Трение скольжения, как и трение покоя, обуслов

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Принцип кинетостатики (принцип Даламбера)
Принцип кинетостатики используют для упрощения решения ряда технических задач. Реально силы инерции приложены к телам, связанным с разго­няющимся телом (к связям). Даламбер предло

Работа постоянной силы на прямолинейном пути
Работа силы в общем случае численно равна произведению мо­дуля силы на длину пройденного мм пути и на косинус угла между направлением силы и направлением перемещения (рис. 3.8): W

Работа постоянной силы на криволинейном пути
Пусть точка М движется по дуге окружности и сила F соста­вляет некоторый угол а

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности.

Коэффициент полезного действия
Способность тела при переходе из одного состояния в другое совершать работу называется энергией. Энергия есть общая мера различных форм движения и взаимодействия матери

Закон изменения количества движения
Количеством движения материальной точки называется вектор­ная величина, равная произведению массы точки на ее скорость

Потенциальная и кинитецеская энергия
Существуют две основные формы механической энергии: потен­циальная энергия, или энергия положения, и кинетическая энергия, или энергия движения. Чаще всего приходится им

Закон изменения кинетической энергии
Пусть на материальную точку массой m действует постоянная сила. В этом случае точк

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как меха­ническая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Oz с угловой скоростью

Моменты инерции некоторых тел
Момент инерции сплошного цилиндра (рис. 3.19) Момент инерции полого тонкостен­ного цили

Сопротивление материалов
Иметь представление о видах расчетов в сопротивлении материалов, о классификации нагрузок, о внутренних силовых факторах и возникающих деформациях, о механических напряжениях. Зн

Основные положения. Гипотезы и допущения
Практика показывает, что все части конструкций под действием нагрузок деформируются, т. е. изменяет свою форму и размеры, а в некоторых случаях происходит разрушение конструкции.

Внешние силы
Всопротивлении материалов под внешними воздейст­виями подразумевается не только силовое взаимодейст­вие, но и тепловое, возникающее из-за неравномерного изменения температурного ре

Деформации линейные и угловые. Упругость материалов
В отличие от теоретической механики, где изучалось взаимодействие абсолютно жестких (недеформируемых) тел, в сопротивлении материалов исследуется поведение конструкций, материал которых способен де

Допущения и ограничения, принятые в сопротивлении материалов
Реальные строительные материалы, из которых воз­водятся различные здания и сооружения, представляют собой довольно сложные и неоднородные твердые тела, обладающие различными свойствами. Учесть это

Виды нагрузок и основных деформаций
В процессе работы машин и сооружений их узлы и детали воспринимают и передают друг другу различные нагрузки, т. е. силовые воздействия, вызывающие изменение внутренних сил и

Формы элементов конструкции
Все многообразие форм сводится к трем видам по одному при­знаку. 1. Брус - любое тело, у которого длина значительно больше других размеров. В зависимости от форм продольной

Метод сечений. Напряжение
Знать метод сечений, внутренние силовые факторы, составляющие напряжений. Уметь определять виды нагружений и внутренние силовые факторы в поперечных сечениях. Для ра

Растяжение и сжатие
Растяжением или сжатием называют вид нагружения, при ко­тором в поперечном сечении бруса возникает только один внутрен­ний силовой фактор - продольная сила. Продольные силы м

Центральное растяжение прямого бруса. Напряжения
Центральным растяжением или сжатием называется такой вид деформации, при котором в любом поперечном сечения бруса возникает только продольная (нормаль­ная) сила N, а все остальные внутренние

Напряжения при растяжении и сжатии
При растяжении и сжатии в сечении действует только нормаль­ное напряжение. Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади. Таким

Закон Гука при растяжении и сжатии
Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука (1635 - 1703).

Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
Используем известные формулы. Закон Гука σ=Еε. Откуда.

Механические испытания. Статические испытания на растяжение и сжатие
Это стандартные испыта­ния: оборудование - стандарт­ная разрывная машина, стан- дартный образец (круглый или плоский), стандартная методика расчета. На рис. 4.15 представлена схема

Механические характеристики
Механические характеристики материалов, т. е. величины, характеризующие их прочность, пластичность, упругость, твер­дость, а также упругие постоянные Е и υ, необходимые конструктору для



Поделиться