Система одк для труб в изоляции ппу. Система одк для труб ппу как инструмент технического обслуживания теплотрассы Система содк как работает

Сегодня для отопления применяются разные материалы. Одним из них является пенополиуретан. Его популярность набирает обороты. Но как любой материал, он может быть поврежден. На помощь приходит система ОДК для труб ППУ. Она контролирует изоляционный слой трубопровода. Благодаря ОДК, можно предотвратить повреждение трубы, своевременно приняв меры. Это уменьшает время и затраты на ремонт.

Система ОДК: назначение, принцип работы, исправление повреждений

Что такое ОДК? Это система оперативного дистанционного контроля. Производит постоянный и непрерывный контроль за (ППУ). Контроль ведется все время службы теплотрассы.

Система предназначена для обнаружения таких дефектов, как:

  • повреждение непосредственно самой трубы;
  • повреждение обертки из полиэтилена, которой обернута труба и слой теплоизоляции;
  • повреждение сигнальных проводов;
  • процесса замыкания сигнальных проводов на трубу;
  • плохого стыкового соединения проводов.

Принцип действия ОДК основывается на датчике, контролирующем слой изоляции, а именно его влажность, который проходит по всей длине трубопровода. Как минимум два провода расположены в слое теплоизоляции и соединены по всей длине трубопровода. На начальной и конечной точке они соединяются в одну петлю. Петля представляет собой сигнальные провода из меди. Между стальными трубами и пенополиуретановым слоем теплоизоляции образуется датчик контроля за уровнем влажности теплоизоляции.

Задачи датчика:

  • контроль всей длины датчика и контроль длины сигнальной петли. Выявление длины того участка трубопровода, которая охвачена датчиком;
  • контроль влажности слоя теплоизоляции;
  • поиск того места, где произошло увлажнение слоя теплоизоляции или оборвался сигнальный провод.

Задача датчика заключается в предоставлении точных данных о состоянии влажности теплоизоляции. Когда в слое теплоизоляции увеличивается количество влаги, значит, это может быть как утечка теплоносителя из трубы, так и попадание влаги снаружи. Как только это происходит, датчик сообщает путем отражения импульса.

Принцип распознавания участка повреждения и его устранение:

  1. как только нарушается теплоизоляция, датчик сообщает об этом. Остается найти повреждение на том участке, который находится между сигнальными индикаторами;
  2. выделенный участок отсоединяется от системы ОДК;
  3. накладывание данных на схему стыков;
  4. исходя из полученных данных, откапывается нужный участок трубопровода и производится ремонт.

Трубы ППУ – новая и перспективная разработка

Остается вопрос, что такое ППУ? Все довольно просто. Это пенополиуретаны – универсальная группа полимеров. Материал новый, но уже получивший свою популярность.

Российский климат вынуждает нас отапливать свои жилища. И остро стоит вопрос не как донести тепло в дом, а как донести его с наименьшими потерями. Раньше трубопровод оборачивали стекловатой, закрепляли ее при помощи стальной проволоки, а сверху покрывали оцинкованными стальными листами. Материал ценный, поэтому он недолго задерживался на трубах. Сегодня все больше используют трубы из пенополиуретана. Из него сделана и теплоизоляция.

Достоинства ППУ:


Этапы монтажа труб ППУ:

  1. зачистка;
  2. сварка и контроль качества;
  3. для этой цели нужен дефектоскоп;
  4. надевание муфты. Под нее заливается монтажная пена. Муфта нагревается и осаживается. Это позволяет получить герметичность соединения.

Система ОДК для теплотрассы – это дополнительный способ защиты. И заключается он в предотвращении больших аварийных ситуаций и максимально быстром устранении маленьких повреждений.

Система ОДК: из чего она состоит

Встроенный медный провод. Он является проводником, по которому передается сигнал о повреждениях. Располагается в теплоизоляционном слое из пенополиуретана. Без него система ОДК не станет работать.

Есть два вида провода:

  • основной. Он повторяет контур трубопровода и протянут по всему пути теплотрассы;
  • транзитный. Предназначен для образования сигнальной петли и проходит по самому короткому пути между точкой начала и конца теплопровода.

Приборы для контролирования и измерений:

  • детекторы повреждений. Они контролируют обрыв или замыкание встроенного сигнального провода. Они не устанавливают причину повреждения, а констатируют факт. Стационарный детектор (220 В) обеспечивает постоянный контроль, переносной (9 В) обеспечивает периодический контроль. Первый вариант может контролировать от одного до четырех трубопроводов. Имеет систему сигнального оповещения. Второй вариант работает автономно, питаясь от батареи. Способен обслужить неограниченное количество трубопроводов. Устанавливаются они в контрольных точках с помощью коммутаторного терминала;
  • импульсный рефлектометр. Способен не только зафиксировать повреждение, но и найти его местоположение. Не предоставляет информацию о причинах дефекта. Подключается на заводе и перед монтажом к торцам труб в тех местах, где сигнальные провода выходят за пределы изоляции. Также подключается при контроле, непосредственно во время эксплуатации теплотрассы.

Коммутаторный терминал системы ОДК представлен как промежуточное звено между приборами контроля и трубой. Обычно их размещают друг от друга на расстоянии 300 метров. Они используются для подсоединения контролирующих приборов, а также коммутации сигнальных проводов.

Проект системы ОДК – как это происходит

Система ОДК для труб ППУ проектируется с возможностью соединиться с уже имеющимся действующими теплотрассами, а также с только планирующимися трубопроводами.

Один из двух сигнальных проводов – маркированный (он же основной). Расположен справа по направлению движения воды к месту назначения. Месторасположения проводника от поверхности трубы колеблется от 10 см до 25 см.

Показатель сопротивления должен соответствовать определенным требованиям:

  • для сигнальных проводов на один метр длины сопротивление должно колебаться от 0,012 Ом до 0,015 Ом;
  • для ППУ изоляции на 300 метров длины трубы – 1 Ом.

Для различных условий эксплуатации используются различные коммутаторные терминалы. Классификация зависит от разных условий.

Погодных:

  • измерительные используются только в сухих и проветриваемых условиях;
  • герметичные. Применяются при условии повышенной влажности воздуха.

Территориальных:

  • концевой, применяющийся в конечных точках контроля;
  • объединяющий. Применяется в точках объединения некоторых участков теплотрассы;
  • объединяющий с возможностью выхода к стационарным детекторам;
  • проходной. В тех местах, где был зафиксирован разрыв изоляционного слоя;
  • промежуточный. Устанавливается в точках контроля, где начинается боковое ответвление теплотрассы, а также в промежуточных контролирующих точках.

Максимальная длина теплотрассы для проекта ОДК вычисляется путем определения максимальной области действия контролирующих приборов.

Вышеупомянутые датчики выбираются в зависимости от наличия 220 В на проектируемом участке, где планируется применение систем ОДК:

  • если присутствует 220 В, используется стационарный детектор.
  • при отсутствии необходимого сопротивления используется переносной.

Какие будут устанавливаться приборы и их количество зависит от протяженности участка теплотрассы. Если длина планируемой теплотрассы длиннее допустимой для работы детектора, этот участок теплотрассы разбивают на меньшие участки. Для них используются отдельные системы контроля.

Предусмотренные проектом контрольные точки предназначены для возможности доступа эксплуатирующего персонала к сигнальным проводникам. Точки не должны быть друг от друга дальше, чем 300 метров.

Терминалы устанавливаются в ковера в концевых точках. Также их установка возможна в центральных тепловых пунктах.

Описание:

А. В. Аушев , сгенеральный директор ООО «Термолайн»

С. Н. Синавчиан , канд. техн. наук, доцент кафедры РЛ-6 МГТУ им. Н. Э. Баумана

Сети центрального отопления и горячего водоснабжения представляют собой теплоизолированную металлическую трубу, создающую герметичный контур для перемещения жидкостей под давлением до 1,6 МПа. В условиях города задача контроля его герметичности определяется как необходимостью сохранения его функциональности, а значит снижения потерь теплоносителя и экономии тепловой энергии, так и требованиями безопасности горожан.

Одним из методов контроля герметичности металлического трубопровода является контроль давления в нем. Однако ряд причин, таких как наличие расхода теплоносителя потребителем, зависимость давления от температуры в замкнутом объеме и низкая точность манометров, делают этот метод весьма грубым.

Определение утечек при канальной и бесканальной прокладке теплопроводов

Теплопроводы можно разделить на две группы:

  • обладающие дополнительной герметичной оболочкой теплоизоляции по всей длине (бесканальная прокладка),
  • с негерметичной оболочкой изоляции, выполняющей в основном функции ее фиксации (канальная прокладка).

Рассмотрим эти группы с точки зрения обеспечения возможности обнаружения и локализации местоположения утечки теплоносителя.

Канальную прокладку применяют, как правило, для трубопроводов, изоляционный слой которых не защищен дополнительной гидроизоляционной оболочкой по всей длине. Для трубопроводов канальной прокладки поиск утечки возможен только при использовании специальной аппаратуры. Такой аппаратурой являются акустические и корреляционные течеискатели, принцип действия которых основан на определении местоположения мощного источника звуковых и вибрационных колебаний при истечении жидкости за пределы герметичного контура.

Также применяют тепловизоры, данные которых позволяют определять местоположение максимального уровня инфракрасного излучения грунта, нагреваемого бесконтрольно истекающим из трубопровода теплоносителем. Иногда применяют химический анализ грунтовых и сточных вод, определение наличия теплоносителя в которых свидетельствует о порыве трубопровода.

Однако в условиях города присутствие смежных коммуникаций (куда уходит теплоноситель), а также неравномерность глубины и поверхности грунта над трубопроводом вносят существенные трудности в определение местоположения утечки при применении тепловизоров и химического анализа вод. Поиск местоположения порыва трубопровода при канальной прокладке, как правило, заключается в комплексном подходе при выполнении данных работ. Кроме того, ни один из перечисленных методов невозможно реализовать дешевым постоянно установленным оборудованием, поэтому экономически доступная возможность автоматического оповещения об аварийной ситуации на трубопроводе отсутствует.

Для бесканальной прокладки применимы только трубопроводы, теплоизоляционный слой которых защищен дополнительной внешней гидроизоляционной оболочкой. Однако эта оболочка не только служит барьером для внешних грунтовых или талых вод, но и является препятствием для проникновения теплоносителя в обсыпку при потере герметичности металлической трубы. При этом истечение теплоносителя в обсыпку не сопровождается мощным выделением акустического шума и вибрации, как это происходит при канальной прокладке, что является причиной малой эффективности использования акустических и корреляционных методов.

Единственным способом (из приведенных выше для трубопроводов канальной прокладки) определения наличия и местоположения разгерметизации металлического трубопровода или внешней оболочки является использование тепловизоров. Однако в условиях города этот способ нельзя считать точным, а автоматизация оповещения об аварийной ситуации недоступна.

Системы оперативного дистанционного контроля трубопроводов

Использование системы оперативного дистанционного контроля (СОДК) трубопроводов в пенополиуретановой (ППУ) изоляции является единственно возможным гарантированным способом контроля состояния изоляции трубопровода канальной прокладки . СОДК представляет собой комплекс из приборной части и трубной, состоящей из двух медных проводников, расположенных в толще изоляции параллельно металлическому трубопроводу по всей его длине (рис.). При намокании изоляции вследствие разгерметизации металлической трубы и внешней полиэтиленовой оболочки ее сопротивление резко снижается, что детектируется стационарными приборами контроля состояния изоляции.

Согласно данные детекторов СОДК необходимо фиксировать не реже одного раза в две недели. Сбор информации традиционно осуществляется сотрудниками службы эксплуатации – «обходчиками», задачей которых является не только обход множества точек, но и фиксация на бумажном носителе данных стационарных и переносных детекторов состояния изоляции. Увеличивающиеся с каждым годом объемы внедрения трубопроводов в ППУ-изоляции, оснащенных СОДК , не позволяют их эффективно контролировать методом обхода, что является причиной необходимости применения систем диспетчеризации (см. справку).

Преимущества диспетчеризации

Еще раз отметим, что автоматический контроль герметичности металлической трубы и внешней оболочки реализуем только для трубопроводов в ППУ-изоляции канальной прокладки, оборудованных СОДК. Постоянный дистанционный мониторинг состояния таких трубопроводов имеет следующие преимущества перед традиционным способом сбора информации:

  • Мгновенное оповещение об изменении состояния трубопровода и целостности СОДК.
  • Согласно п. 9.2 : «Для оперативного выявления повреждений трубопровода необходимо обеспечить регулярный контроль состояния СОДК (не реже двух раз в месяц) с помощью детектора». За это время при прорыве металлической трубы возможен выход из строя всего участка трубопровода с ППУ-изоляцией. Возможно распространение воды внутри теплоизоляции трубопровода (между ППУ-изоляцией и оболочкой, а также ППУ-изоляцией и металлической трубой) на десятки метров в течение короткого времени. Эффективная эксплуатация таких участков в дальнейшем невозможна, процесс их намокания является необратимым, что приводит к необходимости перекладки десятков метров трубопровода.

    Особо отметим, что потеря целостности металлической трубы в ППУ-изоляции не сопровождается резким падением давления в системе, как это происходит в трубопроводах канальной прокладки. Это связано, во-первых, с герметичностью полиэтиленовой оболочки, а во-вторых, с бесканальным методом прокладки трубопровода в ППУ-изоляции. Давление в трубе может сохраняться даже при распространении сетевой воды вдоль трубопровода на десятки метров. Данный факт свидетельствует о невозможности обнаружения аварийной ситуации на трубопроводе в ППУ-изоляции, кроме как с помощью исправной СОДК. В течение двух недель отсутствия съема показаний с детекторов возможен подмыв грунта, что приведет к обвалу несущих слоев почвы, а это, в свою очередь, в условиях города может привести не только к большому материальному ущербу, но и к человеческим жертвам.

  • Отсев ложных вызовов.
  • Специфика работы «обходчиков» определяет возможность фиксации ими ложной информации или отсутствие передачи реальных сведений о показаниях детекторов аварийным службам. Зачастую при прибытии бригад реагирования показания детекторов соответствуют нормальной работе трубопровода, а ложный вызов связан с некомпетентностью «обходчика». Но хуже, если он не зафиксировал или не передал сведения об аварии на трассе. Сотрудники службы эксплуатации или сторонняя организация (работающая по договору), ответственные за съем показаний по месту способом обхода, могут реально не посещать контролируемые объекты, а сами при этом фиксируют «нормальное» состояние трубопровода, так как знают, что на данном этапе их никто не контролирует. Тогда время подмыва грунта превышает две недели, что значительно усугубляет последствия аварии на трубопроводе и увеличивает длину требуемой замены. Исключая человеческий фактор из цепочки оповещения об аварийной ситуации, мы значительно повышаем надежность трубопроводов в ППУ-изоляции.

  • Исключение коррупционной составляющей.
  • Возможна ситуация, когда сотрудник службы эксплуатации, ответственный за съем показаний по месту, по каким-либо причинам умышленно пытается скрыть или исказить реальное состояние трубопровода – например, этим же сотрудником был принят в эксплуатацию трубопровод в ненадлежащем качестве или с неисправной СОДК. При организации удаленного контроля можно исключить коррупционную составляющую, имеющую место при приемке трубопроводов в эксплуатацию. Подобный подход также позволит обеспечить более высокое качество сдаваемых трубопроводов, так как принимает его в эксплуатацию один сотрудник, а контролирует через ПД другой.

  • Применение многоуровневых детекторов.
  • Как правило, на теплотрассах установлены одноуровневые стационарные детекторы повреждений. Они сигнализируют о намокании трубопровода, при котором сопротивление его изоляции снижается только до 5 кОм. Использование многоуровневых детекторов с токовым выходом обеспечивает возможность обнаружения дефекта трубопровода на ранней стадии его формирования. Детектирование сопротивления изоляции контролируемого трубопровода происходит в шести диапазонах, верхний из которых соответствует идеальному состоянию изоляции (более 1 МОм). Скорость снижения сопротивления от верхнего диапазона до нижнего (менее 5 кОм) свидетельствует о размерах дефекта: чем выше скорость – тем значительнее дефект трубопровода.

  • Удобство восприятия получаемой информации, ее обработка и хранение.
  • Сегодня вся информация, полученная от «обходчиков», хранится в основном на бумажных носителях и практически не поддается статистической обработке. Собираемые с помощью системы диспетчеризации данные не только являются более объемными, полными и достоверными, но и дают возможность проводить обработку с помощью различных алгоритмов математического анализа. Это позволяет отсеивать сезонные изменения состояния изоляции трубопровода, ложные срабатывания, ошибки, обусловленные человеческим фактором. Использование специального программного обеспечения позволяет автоматически формировать отчеты о состоянии трубопроводов, отслеживать характер и скорость реагирования персонала на местах, а при накоплении достаточной выборки проводить статистический анализ сведений об использовании трубопроводов с ППУ-изоляцией.

  • Гибкость системы диспетчеризации.
  • Стабильность и качество функционирования любой системы телеметрии зависят от правильной организации архитектуры взаимодействия ее компонентов. Обычная структура системы диспетчеризации предусматривает сбор данных от территориально распределенных контролируемых объектов (часто однотипных) в единый центр. Бывают и другие варианты: многоуровневое построение диспетчерских, локальные узлы сбора или ретрансляции данных и прочие, но сути централизованного построения системы они не меняют. При этом размер системы в зависимости от объекта может быть как небольшим (в случае квартала, предприятия), так и гигантским (филиал, город, область).

  • Экономическая целесообразность.
  • Роль автоматизации и модернизации технологического оборудования коммунальных сетей в современной действительности заключается не только в повышении качества обслуживания населения, но и в снижении стоимости предоставления услуги транспорта тепла и горячей воды. Важными экономическими факторами снижения эксплуатационных затрат являются отсутствие фонда заработной платы «обходчиков», их материального обеспечения, отсутствие необходимости обучения, контроля и бухгалтерского учета. Отсутствуют также дополнительные затруднения, связанные с организацией доступа «обходчиков» в помещения, где установлены детекторы. Особое значение имеет скорость доставки информации об аварийной ситуации, что является основным положительным экономическим показателем.

Перечисленные преимущества систем диспетчеризации показаний детекторов состояния трубопроводов в ППУ-изоляции стали причиной их применения еще в начале 2000-х годов. Первые упоминания о положительных эффектах опубликованы в . На данный момент в одной из теплосетей Московской области единовременно функционируют несколько систем передачи данных, осуществляющих обмен информацией как по кабельным линиям, так и по GSM-каналу.

Способы реализации систем передачи данных

Первый способ – это интеграция стационарных детекторов повреждений как первичных источников информации в архитектуру действующих систем телеметрии, выполняющих задачи мониторинга и управления технологическим оборудованием тепловых пунктов. Реализация данного способа возможна при наличии у детектора СОДК аппаратной возможности передачи данных на входные линии удаленного контроллера (детектор должен быть оснащен специальными выходами для передачи данных типа «токовый выход» или «сухой контакт»). Сотрудники тепловых сетей при этом должны обладать высокими профессиональными навыками для успешной визуализации, анализа и хранения данных детекторов на диспетчерском пульте.

Применяются как кабельные, так и GSM-каналы передачи данных. Этот способ передачи данных реализован для мониторинга и управления рядом тепловых пунктов в Москве, Мытищах, Реутове, Санкт-Петербурге, Астане.

Второй способ ориентирован на использование систем GSM-телеметрии, которые нашли применение в электро­энергетике, газовом хозяйстве, банковской сфере, комплексах охранно-пожарной сигнализации. Высокая конкуренция между производителями таких комплексов является причиной возникновении большого количества надежных и дешевых GSM-контроллеров, применение которых в целях мониторинга параметров состояния трубопроводов в ППУ-изоляции является экономически эффективным и простым в реализации решением . Основными требованиями к системам GSM-телеметрии являются возможность передачи данных от детектора к контроллеру и наличие программного обеспечения диспетчерского пульта. Это программное обеспечение должно обеспечивать:

  • непрерывный неограниченный контроль за удаленными объектами;
  • визуализацию местоположения контролируемых объектов на карте населенного пункта;
  • визуальное и акустическое уведомление в случае аварии;
  • индивидуальное конфигурирование уровня сигнала «Авария» для каждого из объектов;
  • стабильность передачи данных при дублировании различным транспортом (модемное соединение, СМС, голосовое соединение);
  • возможность передачи и визуализации данных от охранных датчиков, датчиков температуры, давления и т. д.;
  • возможность автоматического опроса объектов;
  • отсылка СМС на телефоны ответственных лиц при возникновении аварийных ситуаций;
  • персонализированное управление и хранение информации о действиях оператора в журнале событий;
  • дружественный интерфейс, бесперебойность работы, простоту эксплуатации и т. д.

Коммутация GSM-контроллеров с детекторами, монтаж и конфигурирование удаленных контроллеров осуществляются самостоятельно сотрудниками отделов КИПиА или специальных подразделений, что значительно упрощается ввиду наличия подробных инструкций. Задача формирования локального диспетчерского пульта (ЛДП) на уровне предприятия тепловых сетей является легковыполнимой, так как заключается в установке и настройке бесплатного и интуитивно понятного программного обеспечения. Данный способ реализован предприятиями Новосибирска, Мытищ, Железнодорожного, Дмитрова.

Третий способ диспетчеризации показаний детекторов СОДК предложен в . В случае если эксплуатирующая организация не видит необходимости в создании собственного ЛДП (отсутствие должного финансирования, персонала или сторонней организации соответствующего уровня подготовки, малое количество объектов), возможно использование сервисов объединенного диспетчерского пульта (ОДП). На ОДП, расположенный в Щелково Московской области, стекается информация от сконфигурированных для работы с ОДП GSM-контролеров, установленных на территории РФ, РК и РБ.

Экстренное оповещение ответственного лица эксплуатирующей организации при возникновении аварийной ситуации происходит любым удобным для него способом (личный кабинет на сайте ОДП, электронная почта, сотовый телефон, диспетчерская служба и т. д.). Также предусмотрен плановый опрос по графику, утвержденному эксплуатирующей организацией.

Эксплуатирующая организация должна обеспечить в месте установки детектора и удаленного GSM-контроллера сохранность установленного оборудования, его бесперебойное питание и удовлетворительный уровень GSM-сигнала (при необходимости применение репитера).

Впоследствии возможен дистанционный перевод данных на вновь созданный эксплуатирующей организацией ЛДП. Таким образом, использование услуг ОДП становится тестовым вариантом организации собственного ЛДП.

Способ диспетчеризации показаний детекторов определяется на уровне проектных работ, так как спецификация, а значит и дальнейшее финансирование, формируется специалистом проектной организации, поэтому одной из важных задач эксплуатирующей организации является оформление полного технического задания с указанием требований по диспетчеризации проектируемого трубопровода.

На основании предоставленного технического задания проектировщик должен определить местоположение и комплектацию точки контроля СОДК трубопровода, оснащенной детектором повреждений. Обязательным условием постоянного функционирования такой точки контроля является наличие в ней питания 220 В, 50 Гц. Также поставляются комплектации точек контроля СОДК для работы в автономном режиме , однако их применение возможно только в исключительных случаях, так как вне зависимости от типа источника питания (солнечная панель или батареи) комплекты для автономной работы обеспечивают только периодический контроль состояния изоляции трубопровода, что является основным способом снижения энергопотребления.

Опыт внедрения и поставки оборудования для диспетчеризации показаний детекторов состояния трубопроводов в ППУ-изоляции свидетельствует о своевременности, достаточно высоком уровне оснащенности и экономической эффективности данного направления. Профессиональный подход позволяет полностью автоматизировать процесс оповещения об аварийных ситуациях на трубопроводах тепловых сетей, что возможно только для трубопроводов, оснащенных СОДК. При этом предложены различные способы реализации мониторинга показаний детекторов для различного уровня профессиональной подготовки персонала тепловых сетей.

Литература

  1. СТО 18929664.41.105–2013. Система оперативно-дистанционного контроля трубопроводов с тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке или стальном защитном покрытии. Проектирование, монтаж, приемка, эксплуатация.
  2. Кашинский В. И., Липовских В. М., Ротмистров Я. Г. Опыт эксплуатации трубопроводов в пенополиуретановой изоляции в ОАО «Московская теплосетевая компания» // Теплоэнергетика. 2007. № 7. С. 28–30.
  3. Казанов Ю. Н. Организационная и техническая модернизация системы теплоснабжения Мытищинского района // Новости теплоснабжения. 2009. № 12. С. 13–26.
  4. ООО «Термолайн». Альбом технических решений по проектированию систем оперативно-дистанционного контроля трубопроводов в пенополиуретановой изоляции. М., 2014.

Система ОДК предназначена для непрерывного или периодического контроля состояния теплоизоляционного слоя и обнаружения мест увлажнения изоляции. Появление влаги может быть связано с повреждением внешней полиэтиленовой оболочки или с утечкой теплоносителя из стальной трубы вследствие коррозии или дефектов сварных соединений.

СОДК позволяет контролировать качество монтажа и сварки стального трубопровода, заводской изоляции, работ по изоляции стыковых соединений, предотвращать аварии в процессе эксплуатации теплопровода и, в конечном счете, обеспечивает длительную, надежную и безопасную работу тепловых сетей.

СОДК является обязательным элементом (включена в ГОСТ 30732-2006) трубопроводов в ППУ-изоляции.

СОДК по стоимости составляет всего 0,5-2% от общей стоимости объекта в зависимости от объема заказа. Одним прибором (переносным детектором) можно контролировать несколько объектов.

Система включает в себя:

  • сигнальные проводники в теплоизоляционном слое трубопроводов, проходящие по всей длине теплосети;
  • терминалы для подключения приборов в точках контроля (ЦТП, котельная, ковер) и коммутации сигнальных проводников;
  • кабели для соединения сигнальных проводников с терминалами в точках контроля, а также для соединения сигнальных проводников на участках трубопроводов, где устанавливаются неизолированные элементы;
  • детекторы переносные (9 В) для периодического и детекторы стационарные (220 В)для непрерывного контроля;
  • локаторы (импульсные рефлектометры) - приборы для определения точного места повреждения или утечки;
  • тестеры изоляции.

В системе ОДК «МосФлоулайн» заложен принцип действия НОРДИКС (применяется в 95% всех действующих европейских систем). Система базируется на измерении электрической проводимости теплоизоляционного слоя, которая меняется при изменении влажности. Для поиска мест неисправности (увлажнение ППУ изоляции, обрывы сигнальных проводников) применяются методы и приборы, основанные на импульсной рефлектометрии.

Достоинствами данного метода является его применимость для широкого диапазона увлажнения изоляции и возможность поиска обрывов сигнальных проводников в нескольких местах.

Нашей компанией разработаны и поставляются собственные приборы системы ОДК: переносные и стационарные детекторы, терминалы со штекерными разъемами, а также детекторы нового поколения, имеющие 4 уровня индексации увлажнения, что позволяет отслеживать динамику развития аварийной ситуации и оценивать ее серьезность. Детектор не имеет аналогов в мире.

Специалисты отдела СОДК выполняют следующие работы:

  • периодический контроль состояния сигнальных проводников в период изоляции стыковых соединений и ликвидация неисправностей;
  • удлинение кабельных выводов и установка терминалов и контрольных приборов в точках контроля в соответствии с проектом СОДК;
  • обследование смонтированной СОДК с составлением соответствующего акта о готовности к сдаче;
  • совместная со строительной компанией приемка-передача системы эксплуатирующей организации;
  • консультации по СОДК представителям строительной компании;
  • поиск повреждений системы в гарантийный период по заявкам эксплуатирующей организации.

Статья расскажет, как работает система ОДК в ПИ-трубах и как сделать ее правильно. Информация полезна тем, кто хочет сэкономить и выполнить монтаж самостоятельно, и тем, кто уже имеет опыт использования такой теплосети, но дистанционный контроль вышел из строя или выполнен некачественно.

Незнание основных принципов работы, неверный монтаж элементов и неумение обращаться с приборами зачастую приводят к тому, что все хорошее считается бесполезным или никому не нужным. Так случилось и с системой оперативного дистанционного контроля тепловых сетей: идея была отличная, а вот реализация как всегда подкачала. Безразличие заказчика с одной стороны и «ответственная» работа строителей с другой привели к тому, что в нашей стране СОДК работает правильно в лучшем случае в 50% построенных трубопроводов, а пользуются ей и вовсе в 20% организаций. Взяв для примера Европу, даже не далекую, допустим Польшу, можно увидеть, что неверная работа системы дистанционного контроля приравнивается к аварии на трубопроводе с безотлагательными ремонтными работами. В нашей же стране гораздо чаще можно увидеть раскопанную посреди зимы улицу в поисках места порыва теплопровода, чем летние профилактические работы бригады электриков. Для того чтобы внести ясность, рассмотрим СОДК в теплосетях с самого начала.

Назначение

Трубопроводы тепловых сетей из поколения в поколение остаются стальными, и основной причиной их разрушения является коррозия. Происходит она из-за контакта с влагой, причем в большей степени подвержена ржавчине наружная стенка металлической трубы. Основной функцией СОДК является контроль сухости изоляции трубопровода. Причем указывается без различия причины как попадание влаги извне из-за дефекта пластиковой трубы-оболочки, так и попадание на изоляцию теплоносителя в результате дефекта стального теплопровода.

При помощи специального инструмента и СОДК можно определить:

  • намокание изоляции;
  • расстояние до промокшей изоляции;
  • непосредственный контакт провода СОДК и металлической трубы;
  • обрыв проводов СОДК;
  • нарушение изоляционного слоя соединительного кабеля.

Принцип работы

В основу работы системы положено свойство воды увеличивать проводимость электрического тока. Используемый в качестве изоляции в ПИ-трубах пенополиуретан в сухом состоянии имеет огромное сопротивление, которое электрики характеризуют как бесконечно большое. При попадании влаги в пену проводимость мгновенно улучшается, и приборы, подключенные к системе, фиксируют снижение сопротивления изоляции.

Области применения

Применять трубопроводы, оснащенные системой оперативного дистанционного контроля, имеет смысл при любой подземной прокладке. Довольно часто, даже зная, что трубопровод имеет дефект и идут значительные потери теплоносителя, определить место порыва визуально практически невозможно. Именно из-за этого в зимний период приходится либо раскапывать всю улицу в поисках течи, либо ждать пока вода сама промоет себе путь наружу. Второй вариант довольно часто заканчивается в сводках новостей заметками о том, что в городе N из-за аварии на тепловых сетях и обвала поверхности земли провалились автомобили, люди или еще что-либо, что имело несчастье находиться рядом.

Не добавляет информативности и нахождение трубопровода в канале. Из-за пара определить точку утечки возможно далеко не всегда и земляные работы все равно будут значительными и долгими. Исключение, пожалуй, составляют лишь большие проходные туннели с коммуникациями, но строят их редко и стоят очень дорого.

Вариант воздушной прокладки трубопроводов, вот то место, где система ОДК не имеет никакого практического смысла. Все течи видно невооруженным глазом и растраты на дополнительный контроль ни к чему.

Строение и структура

ПИ-трубы, используемые в тепловых сетях, состоят из стальной трубы, трубы-оболочки из полиэтилена и вспененного полиуретана в качестве изоляции. В этой пене располагаются 3 медных проводника сечением 1,5 мм 2 с удельным сопротивлением от 0,012 до 0,015 Ом/м. Собирают в цепь провода, расположенные в верхней части, в положении «без 10 мин 2 ч», третий остается незадействованным. Сигнальным или основным считается проводник, расположенный справа по ходу движения теплоносителя. Он заходит во все ответвления и именно по нему определяется состояние труб. Левый проводник — транзитный, его основная функция — создание петли.

Для удлинения кабельных выводов и соединения трубопроводов с точками коммутации используют соединительные кабели. Обычно 3-х или 5-ти жильные с тем же сечением в 1,5 мм.

Сами коммутационные терминалы располагаются в ящиках ковера, устанавливаемых на улице либо в помещениях насосных и тепловых пунктов.

Измерения проводят при помощи специализированных приборов. Обычно это переносной импульсный рефлектометр отечественного производства. Для стационарной установки есть также определенные устройства, однако они являются малоинформативными и в большинстве случаев не используются.

Монтаж

Сборка всех элементов системы происходит после сварки трубопровода. И если большинство работ по строительству теплотрассы выполняется исключительно специалистами и с использованием техники, то при небольших познаниях в области электрики и наличии паяльника, газовой горелки и мегомметра работы по монтажу дистанционного контроля можно сделать и самому. Для верного выполнения следует придерживаться следующей последовательности:

  • проверить целостность проводников в изоляции трубы при помощи прозванивания;
  • удалить пену на глубину 2-3 см вне зависимости от степени ее намокания;

  • аккуратно раскрутить и выпрямить свернутые для транспортировки проводники;
  • установить пластиковые подставки на трубу, закрепить их скотчем;
  • зачистить проводники наждачной бумагой и обезжирить;
  • натянуть проводники в разумных пределах (чрезмерное натяжение может послужить причиной разрыва провода из-за температурного расширения трубы, недостаточное к провисанию проводника и контакту с трубой);
  • соединение и припайка проводников друг к другу (не перепутать сигнальный и транзитный провода между собой);

  • вжать провода в специальные прорези в пластиковых подставках;
  • оценить прочность соединения руками;
  • обезжирить растворителем и высушить при помощи газовой горелки концы труб-оболочек для последующего монтажа муфты;
  • прогрев подготовленных концов до температуры в 60 градусов и установка клея;
  • надвинуть муфту на соединение, предварительно удалив белую защитную пленку, произвести усадку при помощи пламени горелки;
  • просверлить 2 отверстия в муфте для оценки герметичности и последующего запенивания;
  • произвести оценку герметичности: в одно отверстие устанавливается манометр, через другое подается воздух, по удержанию давления происходит оценка качества соединения;

  • отрезать термоусаживаемую ленту;
  • подогреть место на стыке муфта/труба-оболочка и прикрепить один конец ленты;
  • симметрично уложить ленту поверх стыка и закрепить внахлест;
  • подогреть замковую пластину и закрыть ей стык ленты;
  • усадить ленту пламенем горелки;
  • провести повторную опрессовку воздухом как описано выше;
  • смешать пенообразующие компоненты А и Б и залить через отверстие в полость под установленной муфтой;
  • при продвижении пены к отверстию установить дренажную пробку для удаления воздуха;
  • после окончания пенообразования зачистить поверхность муфты от пены и установить вварную пробку;
  • после сбора системы в трубной части нарастить проводники в местах вывода;
  • установить ящики ковера;
  • проложить наращенные проводники в оцинкованных трубах от места вывода на трубе до установленного ящика ковера;
  • установить и подключить коммутационные терминалы в соответствии с проектом;

  • подключить стационарные детекторы;
  • выполнить полную проверку при помощи рефлектометра.

В описании рассмотрен вариант с использованием термоусаживаемых муфт, есть и другая разновидность изоляции стыков — электросварные муфты. В этом случае процесс будет немного сложнее из-за использования электрических нагревательных элементов, но суть останется той же.

При выполнении работ по монтажу системы ОДК есть и наиболее распространенные ошибки. Они редко зависят от того, кто выполнял работу — сам заказчик или строитель. Самая главная из них — это неплотная установка муфт. При отсутствии герметичности уже после первого дождя система может показать намокание. Второй ошибкой является невыбранная пена на стыках: даже выглядевшая визуально абсолютно сухой, она часто несет в себе избыток влаги и влияет на корректную работу системы. После обнаружения того или иного дефекта следует понаблюдать за динамикой и принять решение о том, когда производить ремонт: немедленно или в летний межотопительный период.

Способы ремонта

Ремонт системы ОДК иногда требуется уже на стадии строительства. Рассмотрим несколько частых случаев.

  1. Сигнальный провод сломан на выходе из изоляции.

Следует удалить пену до образования необходимого количества проводника и нарастить длину при помощи припаивания дополнительного провода (можно использовать остатки с других стыков). При проведении спайки следует быть внимательным и не допускать воспламенения изоляции трубопровода.

  1. Провод системы ОДК контактирует с трубой.

Если добраться до места контакта без нарушения целостности оболочки невозможно, следует использовать для соединения в цепь 3-й незадействованный провод вместо дефектного проводника. Если все проводники в результате заводского брака являются непригодными, следует поставить в известность поставщика. В зависимости от его возможностей и вашего желания будет проведена замена трубы либо ремонт с уменьшением стоимости прямо на месте. Если по какой либо причине связь с поставщиком невозможна, самостоятельный ремонт проводят следующим образом:

  • определение места контакта;
  • разрез трубы-оболочки;
  • выборка пены;
  • устранение контакта, при необходимости спайка проводника;
  • восстановление слоя изоляции;
  • восстановление целостности трубы-оболочки при помощи ремонтной муфты или экструдера.

Во время эксплуатации тепловых сетей ремонт связан не столько с восстановлением функционала, сколько с сушкой пены. Причины могут быть самые разные: строительные ошибки при герметизации муфт, разрыв теплопровода, неаккуратные земляные работы вблизи труб и многое другое. При попадании влаги оптимальным вариантом является ее удаление до нормальных показателей сопротивления. Достигается это различными способами: от просушки при раскрытой оболочке до замены изоляционного слоя. Контролируется степень сухости импульсным рефлектометром. После достижения необходимых показателей восстановление целостности оболочки проводится так же, как описано выше.

Заключение

Напоследок хотелось бы выразить надежду, что после прочтения статьи задумаются о необходимости применения системы контроля не только частники, строящие сети к своему производственному зданию или офису, но и службы, вплотную занимающиеся эксплуатацией трубопроводов. Возможно, тогда станет намного меньше несчастных случаев и финансовых потерь при централизованном теплоснабжении городов.

Ольга Устимкина, рмнт.ру

Система ОДК позволяет контролировать состояние трубопровода, оперативно сигнализировать о появившейся неисправности и точно указать место любого дефекта. Наличие системы ОДК значительно экономит денежные средства и сокращает время, затрачиваемое на обслуживание трубопровода.

Система контроля позволяет обнаружить следующие дефекты:

  • Повреждение металлической трубы (свищ).
  • Повреждение полиэтиленовой оболочки.
  • Обрыв сигнальных проводников.
  • Замыкание сигнальных проводников на металлическую трубу.
  • Плохое соединение сигнальных проводов на стыках.


Состав системы ОДК

Система оперативно-дистанционного контроля представляет собой специальный комплекс приборов и вспомогательного оборудования (которое в дальнейшем будет именоваться элементами системы ОДК) с помощью которого осуществляется контроль состояния трубо-провода. Исключение какого-либо элемента из состава системы нарушает ее целостность и нормативную функциональность.

В состав системы контроля входят следующие компоненты:

  • Сигнальные проводники
  • Контрольно-измерительное оборудование (Детекторы повреждений, импульсный рефлектометр – локатор, контрольно-монтажный прибор «Robin КМР 3050 DL»).
  • Коммутационные терминалы.
  • Соединительные кабели.
  • Наземные и настенные ковера.
  • Материалы и оборудование для монтажа.

Сигнальные проводники

Назначение

Все трубопроводы и фасонные изделия (тройники, отводы, задвижки, неподвижные опоры, компенсаторы) должны быть оснащены сигнальными проводниками. С помощью сигнальных проводов (по ним передается сигнал – ток или высокочастотный импульс) определяется со- стояние трубопровода.


Технические параметры

Конфигурация проводников

Сигнальные провода, устанавливаемые внутри теплоизоляционного слоя пенополиуретана, протягивают параллельно изготавливаемой трубе и геометрически располагают их на “3” и “9” или “2” и “10” часов.

Функциональное назначение проводников

Монтируемые провода абсолютно одинаковые, однако по назначению подразделяются на основной и транзитный провода.
Основной провод – это сигнальный проводник, заходящий при монтаже теплотрассы во все ее ответвления. Этот провод является главным для определения состояния трубопровода, так как повторяет его контур.
Транзитный провод – это сигнальный проводник, который не заходит ни в одно ответвление теплотрассы, а проходит по кратчайшему пути между начальной и конечной точкой трубопровода и в основном служит для образования сигнальной петли.


Монтаж проводников при строительстве

При строительстве теплотрассы монтаж проводников производится на стыковых соединениях трубопровода.
Монтаж проводов надо осуществлять таким образом, чтобы основной сигнальный провод находился справа по направлению подачи воды к потребителю на всех трубопроводах, а все боковые ответвления должны включаться в разрыв основного сигнального проводника. Боковые ответвления к транзитному проводу подключать запрещается.

Соединение проводов на стыках

Сигнальные провода соединяются между собой соответственно: основной с основным, а транзитный с транзитным.
С помощью пассатижей аккуратно выпрямляются и растягиваются скрученные в спираль провода и, не допуская изломов, располагаются параллельно внутри .
Провода зачищаются с помощью наждачной бумаги от остатков пены и краски, а затем тщательно обезжириваются.
Провода следует натянуть и отрезать лишние части таким образом, чтобы не было слабины при соединении.
Вставить концы проводов в обжимную гильзу и опрессовать гильзу с обеих сторон с помощью обжимных клещей.
После этого полученное соединение необходимо облудить с помощью неактивного флюса, припоя ПОС-61 и газового паяльника (или электрического, если есть электропитание 220В) соединение проводов нагревают паяльником, через несколько секунд оно нагревается до температуры плавления припоя.
Соединение запаяно правильно, в том случае, когда припой заполняет обжимную втулку с обеих сторон.
Для проверки правильности соединения необходимо потянуть за сигнальные провода, чтобы проверить, в порядке ли сращивание.
Вжать провода в специальные прорези в держатели проводов, предварительно прикрепленные к металлической трубе.



Поделиться