Системы с нелинейными уравнениями. Тема урока: "Однородные тригонометрические уравнения" (10-й класс)

Стоп! Давай всетаки попытаемся разобраться в этой громоздкой формуле.

На первом месте должна идти первая переменная в степени с некоторым коэффициентом. В нашем случае это

В нашем случае это. Как мы выяснили, значит здесь степень при первой переменной - сходится. И вторая переменная в первой степени - на месте. Коэффициент.

У нас это.

Первая переменная в степени, и вторая переменная в квадрате, с коэффициентом. Это последний член уравнения.

Как видишь, наше уравнение подходит под определение в виде формулы.

Давай рассмотрим вторую (словесную) часть определения.

У нас две неизвестные и. Здесь сходится.

Рассмотрим все слагаемые. В них сумма степеней неизвестных должна быть одинакова.

Сумма степеней равна.

Сумма степеней равна (при и при).

Сумма степеней равна.

Как видишь, все сходится!!!

Теперь давай потренируемся в определении однородных уравнений.

Определи, какие из уравнений - однородные:

Однородные уравнения - уравнения под номерами:

Рассмотрим отдельно уравнение.

Если мы разделим каждое слагаемое на разложим каждое слагаемое, то получим

А это уравнение полностью попадает под определение однородных уравнений.

Как решать однородные уравнения?

Пример 2.

Разделим уравнение на.

У нас по условию y не может быть равен. Поэтому мы можем смело делить на

Произведя замену, мы получим простое квадратное уравнение:

Так как это приведенное квадратное уравнение, воспользуемся теоремой Виета:

Произведя обратную замену, получаем ответ

Ответ:

Пример 3.

Разделим уравнение на (по условию).

Ответ:

Пример 4.

Найдите, если.

Здесь нужно не делить, а умножать. Умножим все уравнение на:

Произведем замену и решим квадратное уравнение:

Произведя обратную замену, получим ответ:

Ответ:

Решение однородных тригонометрических уравнений.

Решение однородных тригонометрических уравнений ничем не отличается от способов решения, описанных выше. Только здесь, помимо прочего, нужно немного знать тригонометрию. И уметь решать тригонометрические уравнения (для этого можешь прочитать раздел ).

Рассмотрим такие уравнения на примерах.

Пример 5.

Решите уравнение.

Мы видим типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

Подобные однородные уравнения решаются не сложно, но перед тем, как разделить уравнения на, рассмотрим случай, когда

В этом случае уравнение примет вид: , значит. Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому, и на него можно смело делить:

Так как уравнение приведенное, то по теореме Виета:

Ответ:

Пример 6.

Решите уравнение.

Как и в примере, нужно разделить уравнение на. Рассмотрим случай, когда:

Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому.

Сделаем замену и решим квадратное уравнение:

Сделаем обратную замену и найдем и:

Ответ:

Решение однородных показательных уравнений.

Однородные уравнения решаются так же, как рассмотренных выше. Если ты забыл, как решать показательные уравнения - посмотри соответствующий раздел ()!

Рассмотрим несколько примеров.

Пример 7.

Решите уравнение

Представим как:

Мы видим типичное однородное уравнение, с двумя переменными и суммой степеней. Разделим уравнение на:

Как можно заметить, произведя замену, мы получим приведенное квадратное уравнение (при этом не нужно опасаться деления на ноль - всегда строго больше нуля):

По теореме Виета:

Ответ: .

Пример 8.

Решите уравнение

Представим как:

Разделим уравнение на:

Произведем замену и решим квадратное уравнение:

Корень не удовлетворяет условию. Произведем обратную замену и найдем:

Ответ:

ОДНОРОДНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

Сначала на примере одной задачки напомню что такое однородные уравнения и что из себя представляет решение однородных уравнений.

Решите задачу:

Найдите, если.

Здесь можно заметить любопытную вещь: если поделить каждое слагаемое на, получим:

То есть, теперь нет отдельных и, - теперь переменной в уравнении является искомая величина. И это обычное квадратное уравнение, которое легко решить с помощью теоремы Виета: произведение корней равно, а сумма - это числа и.

Ответ:

Уравнения вида

называется однородным. То есть, это уравнение с двумя неизвестными, в каждом слагаемом которого одинаковая сумма степеней этих неизвестных. Например, в примере выше эта сумма равна. Решение однородных уравнений осуществляется делением на одну из неизвестных в этой степени:

И последующей заменой переменных: . Таким образом получаем уравнение степени с одной неизвестной:

Чаще всего нам будут встречаться уравнения второй степени (то есть квадратные), а их решать мы умеем:

Отметим, что делить (и умножать) все уравнение на переменную можно только если мы убеждены, что эта переменная не может быть равна нулю! Например, если нас просят найти, сразу понимаем, что, поскольку на делить нельзя. В случаях, когда это не так очевидно, необходимо отдельно проверять случай когда эта переменная равна нулю. Например:

Решите уравнение.

Решение:

Видим здесь типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

Но, прежде чем разделить на и получить квадратное уравнение относительно, мы должны рассмотреть случай, когда. В этом случае уравнение примет вид: , значит, . Но синус и косинус не могут быть одновременно равны нулю, ведь по основному тригонометрическому тождеству: . Поэтому, и на него можно смело делить:

Надеюсь, это решение полностью понятно? Если нет, прочитай раздел . Если же непонятно, откуда взялось, тебе нужно вернуться еще раньше - к разделу .

Реши сам:

  1. Найдите, если.
  2. Найдите, если.
  3. Решите уравнение.

Здесь я кратко напишу непосредственно решение однородных уравнений:

Решения:

    Ответ: .

    А здесь надо не делить, а умножать:

    Ответ:

    Если тригонометрические уравнения ты еще не проходил, этот пример можно пропустить.

    Так как здесь нам нужно делить на, убедимся сперва, сто он не равен нулю:

    А это невозможно.

    Ответ: .

ОДНОРОДНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

Решение всех однородных уравнений сводится к делению на одну из неизвестных в степени и дальнейшей заменой переменных.

Алгоритм:

Сегодня мы займемся однородными тригонометрическими уравнениями. Для начала разберемся с терминологией: что такое однородное тригонометрическое уравнение. Оно имеет следующие характеристики:

  1. в нем должно быть несколько слагаемых;
  2. все слагаемые должны иметь одинаковую степень;
  3. все функции, входящие в однородное тригонометрическое тождество, должны обязательно иметь одинаковый аргумент.

Алгоритм решения

Выделим слагаемые

И если с первым пунктом все понятно, то о втором стоить поговорить поподробней. Что значит одинаковая степень слагаемых? Давайте рассмотрим первую задачу:

3cosx+5sinx=0

3\cos x+5\sin x=0

Первое слагаемое в этом уравнении —3cosx 3\cos x. Обратите внимание, здесь есть только одна тригонометрическая функция — cosx \cos x — и больше никаких других тригонометрических функций здесь не присутствует, поэтому степень этого слагаемого равна 1. То же самое со вторым — 5sinx 5\sin x — здесь присутствует только синус, т. е. степень этого слагаемого тоже равна единице. Итак, перед нами тождество, состоящее из двух элементов, каждое из которых содержит тригонометрическую функцию, и при этом только одну. Это уравнение первой степени.

Переходим ко второму выражению:

4sin 2 x+sin2x−3=0

4{{\sin }^{2}}x+\sin 2x-3=0

Первый член этой конструкции — 4sin 2 x 4{{\sin }^{2}}x.

Теперь мы можем записать следующее решение:

sin 2 x=sinx⋅sinx

{{\sin }^{2}}x=\sin x\cdot \sin x

Другими словами, первое слагаемое содержит две тригонометрические функции, т. е. его степень равна двум. Разберемся со вторым элементом — sin2x \sin 2x. Вспомним такую формулу — формулу двойного угла:

sin2x=2sinx⋅cosx

\sin 2x=2\sin x\cdot \cos x

И опять, в полученной формуле у нас есть две тригонометрические функции — синус и косинус. Таким образом, степенное значение этого члена конструкции тоже равно двум.

Переходим к третьему элементу — 3. Из курса математики средней школы мы помним, что любое число можно умножать на 1, так и запишем:

˜ 3=3⋅1

А единицу с помощью основного тригонометрического тождества можно записать в следующем виде:

1=sin 2 x⋅cos 2 x

1={{\sin }^{2}}x\cdot {{\cos }^{2}}x

Следовательно, мы можем переписать 3 в следующем виде:

3=3(sin 2 x⋅cos 2 x) =3sin 2 x+3cos 2 x

3=3\left({{\sin }^{2}}x\cdot {{\cos }^{2}}x \right)=3{{\sin }^{2}}x+3{{\cos }^{2}}x

Таким образом, наше слагаемое 3 разбилось на два элемента, каждый из которых является однородным и имеет вторую степень. Синус в первом члене встречается дважды, косинус во втором — тоже дважды. Таким образом, 3 тоже может быть представлено в виде слагаемого со степенным показателем два.

С третьим выражением то же самое:

sin 3 x+sin 2 xcosx=2cos 3 x

Давайте посмотрим. Первое слагаемое — sin 3 x {{\sin }^{3}}x — это тригонометрическая функция третьей степени. Второй элемент — sin 2 xcosx {{\sin }^{2}}x\cos x.

sin 2 {{\sin }^{2}} — это звено со степенным значением два, умноженное на cosx \cos x — слагаемое первой. Итого, третий член тоже имеет степенное значение три. Наконец, справа стоит еще одно звено — 2cos 3 x 2{{\cos }^{3}}x — это элемент третьей степени. Таким образом, перед нами однородное тригонометрическое уравнение третьей степени.

У нас записано три тождества разных степеней. Обратите внимание еще раз на второе выражение. В исходной записи у одного из членов присутствует аргумент 2x 2x. Мы вынуждены избавиться от этого аргумента, преобразовав его по формуле синуса двойного угла, потому что все функции, входящие в наше тождество, должны обязательно иметь одинаковый аргумент. И это требование для однородных тригонометрических уравнений.

Используем формулу основного тригонометрического тождества и записываем окончательное решение

С терминами мы разобрались, переходим к решению. Независимо от степенного показателя, решение равенств такого типа всегда выполняется в два шага:

1) доказать, что

cosx≠0

\cos x\ne 0. Для этого достаточно вспомнить формулу основного тригонометрического тождества (sin 2 x⋅cos 2 x=1) \left({{\sin }^{2}}x\cdot {{\cos }^{2}}x=1 \right) и подставить в эту формулу cosx=0 \cos x=0. Мы получим следующее выражение:

sin 2 x=1 sinx=±1

\begin{align}& {{\sin }^{2}}x=1 \\& \sin x=\pm 1 \\\end{align}

Подставляя полученные значения, т. е. вместо cosx \cos x — ноль, а вместо sinx \sin x — 1 или -1, в исходное выражение, мы получим неверное числовое равенство. Это и является обоснованием того, что

cosx≠0

2) второй шаг логичным образом вытекает из первого. Поскольку

cosx≠0

\cos x\ne 0, делим обе наши стороны конструкции на cos n x {{\cos }^{n}}x, где n n — то само степенной показатель однородного тригонометрического уравнения. Что это нам дает:

\[\begin{array}{·{35}{l}}

sinx cosx =tgx cosx cosx =1

\begin{align}& \frac{\sin x}{\cos x}=tgx \\& \frac{\cos x}{\cos x}=1 \\\end{align} \\{} \\\end{array}\]

Благодаря этому наша громоздкая исходная конструкция сводится к уравнению n n-степени относительно тангенса, решение которой легко записать с помощью замены переменной. Вот и весь алгоритм. Давайте посмотрим, как он работает на практике.

Решаем реальные задачи

Задача №1

3cosx+5sinx=0

3\cos x+5\sin x=0

Мы уже выяснили, что это однородное тригонометрическое уравнение со степенным показателем, равным единице. Поэтому в первую очередь выясним, что cosx≠0 \cos x\ne 0. Предположим противное, что

cosx=0→sinx=±1

\cos x=0\to \sin x=\pm 1.

Подставляем полученное значение в наше выражение, получаем:

3⋅0+5⋅(±1) =0 ±5=0

\begin{align}& 3\cdot 0+5\cdot \left(\pm 1 \right)=0 \\& \pm 5=0 \\\end{align}

На основании этого можно сказать, что cosx≠0 \cos x\ne 0. Разделим наше уравнение на cosx \cos x, потому что все наше выражение имеет степенное значение, равное единице. Получим:

3(cosx cosx ) +5(sinx cosx ) =0 3+5tgx=0 tgx=−3 5

\begin{align}& 3\left(\frac{\cos x}{\cos x} \right)+5\left(\frac{\sin x}{\cos x} \right)=0 \\& 3+5tgx=0 \\& tgx=-\frac{3}{5} \\\end{align}

Это не табличное значение, поэтому в ответе будет фигурироватьarctgx arctgx:

x=arctg(−3 5 ) + π n,n∈Z

x=arctg\left(-\frac{3}{5} \right)+\text{ }\!\!\pi\!\!\text{ }n,n\in Z

Поскольку arctg arctg arctg— функция нечетная, «минус» мы можем вынести из аргумента и поставить его перед arctg. Получим окончательный ответ:

x=−arctg3 5 + π n,n∈Z

x=-arctg\frac{3}{5}+\text{ }\!\!\pi\!\!\text{ }n,n\in Z

Задача №2

4sin 2 x+sin2x−3=0

4{{\sin }^{2}}x+\sin 2x-3=0

Как вы помните, прежде чем приступить к его решению, нужно выполнить некоторые преобразования. Выполняем преобразования:

4sin 2 x+2sinxcosx−3(sin 2 x+cos 2 x) =0 4sin 2 x+2sinxcosx−3sin 2 x−3cos 2 x=0 sin 2 x+2sinxcosx−3cos 2 x=0

\begin{align}& 4{{\sin }^{2}}x+2\sin x\cos x-3\left({{\sin }^{2}}x+{{\cos }^{2}}x \right)=0 \\& 4{{\sin }^{2}}x+2\sin x\cos x-3{{\sin }^{2}}x-3{{\cos }^{2}}x=0 \\& {{\sin }^{2}}x+2\sin x\cos x-3{{\cos }^{2}}x=0 \\\end{align}

Мы получили конструкцию, состоящую из трех элементов. В первом члене мы видим sin 2 {{\sin }^{2}}, т. е. его степенное значение равно двум. Во втором слагаемом мы видим sinx \sin x и cosx \cos x — опять же функции две, они перемножаются, поэтому общая степень снова два. В третьем звене мы видим cos 2 x {{\cos }^{2}}x — аналогично первому значению.

Докажем, что cosx=0 \cos x=0 не является решением данной конструкции. Для этого предположим противное:

\[\begin{array}{·{35}{l}}

\cos x=0 \\\sin x=\pm 1 \\1+2\cdot \left(\pm 1 \right)\cdot 0-3\cdot 0=0 \\1+0-0=0 \\1=0 \\\end{array}\]

Мы доказали, что cosx=0 \cos x=0 не может быть решением. Переходим ко второму шагу — делим все наше выражение на cos 2 x {{\cos }^{2}}x. Почему в квадрате? Потому что степенной показатель этого однородного уравнения равен двум:

sin 2 x cos 2 x +2sinxcosx cos 2 x −3=0 tg 2 x+2tgx−3=0

\begin{align}& \frac{{{\sin }^{2}}x}{{{\cos }^{2}}x}+2\frac{\sin x\cos x}{{{\cos }^{2}}x}-3=0 \\& t{{g}^{2}}x+2tgx-3=0 \\\end{align}

Можно ли решать данное выражение с помощью дискриминанта? Конечно можно. Но я предлагаю вспомнить теорему, обратную теореме Виета, и мы получим, что данный многочлен представим в виде двух простых многочленов, а именно:

(tgx+3) (tgx−1) =0 tgx=−3→x=−arctg3+ π n,n∈Z tgx=1→x= π 4 + π k,k∈Z

\begin{align}& \left(tgx+3 \right)\left(tgx-1 \right)=0 \\& tgx=-3\to x=-arctg3+\text{ }\!\!\pi\!\!\text{ }n,n\in Z \\& tgx=1\to x=\frac{\text{ }\!\!\pi\!\!\text{ }}{4}+\text{ }\!\!\pi\!\!\text{ }k,k\in Z \\\end{align}

Многие ученики спрашивают, стоит ли для каждой группы решений тождеств писать отдельные коэффициенты или не заморачиваться и везде писать один и тот же. Лично я считаю, что лучше и надежнее использовать разные буквы, чтобы в случае, когда вы будете поступать в серьезный технический вуз с дополнительными испытаниями по математике, проверяющие не придрались к ответу.

Задача №3

sin 3 x+sin 2 xcosx=2cos 3 x

{{\sin }^{3}}x+{{\sin }^{2}}x\cos x=2{{\cos }^{3}}x

Мы уже знаем, что это однородное тригонометрическое уравнение третьей степени, никакие специальные формулы не нужны, и все, что от нас требуется, это перенести слагаемое 2cos 3 x 2{{\cos }^{3}}x влево. Переписываем:

sin 3 x+sin 2 xcosx−2cos 3 x=0

{{\sin }^{3}}x+{{\sin }^{2}}x\cos x-2{{\cos }^{3}}x=0

Мы видим, что каждый элемент содержит в себе три тригонометрические функции, поэтому это уравнение имеет степенное значение, равное трем. Решаем его. В первую очередь, нам нужно доказать, чтоcosx=0 \cos x=0 не является корнем:

\[\begin{array}{·{35}{l}}

\cos x=0 \\\sin x=\pm 1 \\\end{array}\]

Подставим эти числа в нашу исходную конструкцию:

(±1) 3 +1⋅0−2⋅0=0 ±1+0−0=0 ±1=0

\begin{align}& {{\left(\pm 1 \right)}^{3}}+1\cdot 0-2\cdot 0=0 \\& \pm 1+0-0=0 \\& \pm 1=0 \\\end{align}

Следовательно, cosx=0 \cos x=0 не является решением. Мы доказали, что cosx≠0 \cos x\ne 0. Теперь, когда мы это доказали, разделим наше исходное уравнение на cos 3 x {{\cos }^{3}}x. Почему именно в кубе? Потому что мы только что доказали, что наше исходное уравнение имеет третью степень:

sin 3 x cos 3 x +sin 2 xcosx cos 3 x −2=0 tg 3 x+tg 2 x−2=0

\begin{align}& \frac{{{\sin }^{3}}x}{{{\cos }^{3}}x}+\frac{{{\sin }^{2}}x\cos x}{{{\cos }^{3}}x}-2=0 \\& t{{g}^{3}}x+t{{g}^{2}}x-2=0 \\\end{align}

Введем новую переменную:

tgx=t

Переписываем конструкцию:

t 3 +t 2 −2=0

{{t}^{3}}+{{t}^{2}}-2=0

Перед нами кубическое уравнение. Как его решать? Изначально, когда я только составлял данный видеоурок, то планировал предварительно рассказать о разложении многочленов на множители и прочих приемов. Но в данном случае все намного проще. Взгляните, наше тождество приведенное, при слагаемом с наибольшей степенью стоит 1. Кроме того, все коэффициенты целые. А это значит, что мы можем воспользоваться следствием из теоремы Безу, которое гласит, что все корни являются делителями числа -2, т. е. свободного члена.

Возникает вопрос: на что делится -2. Поскольку 2 — число простое, то вариантов не так уж много. Это могут быть следующие числа: 1; 2; -1; -2. Отрицательные корни сразу отпадают. Почему? Потому что оба они по модулю больше 0, следовательно, t 3 {{t}^{3}} будет больше по модулю, чем t 2 {{t}^{2}}. А так как куб — функция нечетная, поэтому число в кубе будет отрицательным, а t 2 {{t}^{2}} — положительным, и вся эта конструкция, при t=−1 t=-1 и t=−2 t=-2, будет не больше 0. Вычитаем из него -2 и получаем число, которое заведомо меньше 0. Остаются лишь 1 и 2. Давайте подставим каждое из этих чисел:

˜ t=1→ 1+1−2=0→0=0

˜t=1\to \text{ }1+1-2=0\to 0=0

Мы получили верное числовое равенство. Следовательно, t=1 t=1 является корнем.

t=2→8+4−2=0→10≠0

t=2\to 8+4-2=0\to 10\ne 0

t=2 t=2 не является корнем.

Согласно следствию и все той же теореме Безу, любой многочлен, чьим корнем является x 0 {{x}_{0}}, представим в виде:

Q(x)=(x=x 0 )P(x)

Q(x)=(x={{x}_{0}})P(x)

В нашем случае в роли x x выступает переменная t t, а в роли x 0 {{x}_{0}} — корень, равный 1. Получим:

t 3 +t 2 −2=(t−1)⋅P(t)

{{t}^{3}}+{{t}^{2}}-2=(t-1)\cdot P(t)

Как найти многочлен P(t) P\left(t \right)? Очевидно, нужно сделать следующее:

P(t)=t 3 +t 2 −2 t−1

P(t)=\frac{{{t}^{3}}+{{t}^{2}}-2}{t-1}

Подставляем:

t 3 +t 2 +0⋅t−2 t−1 =t 2 +2t+2

\frac{{{t}^{3}}+{{t}^{2}}+0\cdot t-2}{t-1}={{t}^{2}}+2t+2

Итак, наш исходный многочлен разделился без остатка. Таким образом, мы можем переписать наше исходное равенство в виде:

(t−1)(t 2 +2t+2)=0

(t-1)({{t}^{2}}+2t+2)=0

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Первый множитель мы уже рассмотрели. Давайте рассмотрим второй:

t 2 +2t+2=0

{{t}^{2}}+2t+2=0

Опытные ученики, наверное, уже поняли, что данная конструкция не имеет корней, но давайте все-таки посчитаем дискриминант.

D=4−4⋅2=4−8=−4

D=4-4\cdot 2=4-8=-4

Дискриминант меньше 0, следовательно, выражение не имеет корней. Итого, огромная конструкция свелась к обычному равенству:

\[\begin{array}{·{35}{l}}

t=\text{ }1 \\tgx=\text{ }1 \\x=\frac{\text{ }\!\!\pi\!\!\text{ }}{4}+\text{ }\!\!\pi\!\!\text{ }k,k\in Z \\\end{array}\]

В заключение хотелось бы добавить пару замечаний по последней задаче:

  1. всегда ли будет выполняться условие cosx≠0 \cos x\ne 0,и стоит ли вообще проводить эту проверку. Разумеется, не всегда. В тех случаях, когда cosx=0 \cos x=0 является решением нашего равенства, следует вынести его за скобки, и тогда в скобках останется полноценное однородное уравнение.
  2. что такое деление многочлена на многочлен. Действительно, в большинстве школ этого не изучают, и когда ученики впервые видят такую конструкцию, то испытывают легкий шок. Но, на самом деле, это простой и красивый прием, который существенно облегчает решение уравнений высших степеней. Разумеется, ему будет посвящен отдельный видеоурок, который я опубликую в ближайшее время.

Ключевые моменты

Однородные тригонометрические уравнения — любимая тема на всевозможных контрольных работах. Решаются они очень просто — достаточно один раз потренироваться. Чтобы было понятно, о чем речь, введем новое определение.

Однородное тригонометрическое уравнение — это такое, в котором каждое ненулевое слагаемое которого состоит из одинакового количества тригонометрических множителей. Это могут быть синусы, косинусы или их комбинации — метод решения всегда один и тот же.

Степень однородного тригонометрического уравнения — это количество тригонометрических множителей, входящих в ненулевые слагаемые.Примеры:

    sinx+15 cos x=0

    \sin x+15\text{ cos }x=0 — тождество 1-й степени;

    2 sin2x+5sinxcosx−8cos2x=0

    2\text{ sin}2x+5\sin xcosx-8\cos 2x=0 — 2-й степени;

    sin3x+2sinxcos2x=0

    \sin 3x+2\sin x\cos 2x=0 — 3-ей степени;

    sinx+cosx=1

    \sin x+\cos x=1 — а это уравнение не является однородным, поскольку справа стоит единица — ненулевое слагаемое, в котором отсутствуют тригонометрические множители;

    sin2x+2sinx−3=0

    \sin 2x+2\sin x-3=0 — тоже неоднородное уравнение. Элемент sin2x \sin 2x — второй степени (т.к. можно представить

    sin2x=2sinxcosx

    \sin 2x=2\sin x\cos x), 2sinx 2\sin x — первой, а слагаемое 3 — вообще нулевой, поскольку ни синусов, ни косинусов в нем нет.

Общая схема решения

Схема решения всегда одна и та же:

Предположим, что cosx=0 \cos x=0. Тогда sinx=±1 \sin x=\pm 1 — это следует из основного тождества. Подставляем sinx \sin x и cosx \cos x в исходное выражение, и если получается бред (например, выражение 5=0 5=0), переходим ко второму пункту;

Делим все на степень косинуса: cosx,cos2x,cos3x... — зависит от степенного значения уравнения. Получим обычное равенство с тангенсами, которое благополучно решается после замены tgx=t.

tgx=tНайденные корни будут ответом к исходному выражению.

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A - некоторое множество пар чисел (x ; y ) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

где f (x , y ) – любая функция, отличная от функции

f (x , y ) = ax +by + c ,

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y ) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Ответ : (6 ; 3)

Пример 2 . Решить уравнение

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

(1 + y ; y ) ,

где y – любое число.

линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y ) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное , имеют вид

g (x , y )

Пример 4 . Решить систему уравнений

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Решая уравнение

x 1 = - 1 , x 2 = 9 .

Следовательно,

y 1 = 8 - x 1 = 9 ,
y 2 = 8 - x 2 = - 1 .

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное , имеют вид

где a , b , c – заданные числа, а g (x , y ) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

Решение . Решим однородное уравнение

3x 2 + 2xy - y 2 = 0 ,

3x 2 + 17xy + 10y 2 = 0 ,

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = - 5y , из второго уравнения системы (11) получаем уравнение

5y 2 = - 20 ,

которое корней не имеет.

В случае, когда

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y 1 = 3 , y 2 = - 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (- 2 ; 3) , (2 ; - 3) .

Ответ : (- 2 ; 3) , (2 ; - 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

У системы (16) первое уравнение - линейное , поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы.

В этой статье мы рассмотрим способ решения однородных тригонометрических уравнений.

Однородные тригонометрические уравнения имеют ту же структуру, что и однородные уравнения любого другого вида. Напомню способ решения однородных уравнений второй степени:

Рассмотрим однородные уравнения вида

Отличительные признаки однородных уравнений:

а) все одночлены имеют одинаковую степень,

б) свободный член равен нулю,

в) в уравнении присутствуют степени с двумя различными основаниями.

Однородные уравнения решаются по сходному алгоритму.

Чтобы решить уравнение такого типа, разделим обе части уравнения на (можно разделить на или на )

Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

Если является, то мы выписываем этот корень, чтобы потом про него не забыть, а затем делим на это выражение.

Вообще, первым делом, при решении любого уравнения, в правой части которого стоит ноль, нужно попытаться разложить левую часть уравнения на множители любым доступным способом. А затем каждый множитель приравнять к нулю. В этом случае мы точно не потеряем корни.

Итак, осторожно разделим левую часть уравнения на выражение почленно. Получим:

Сократим числитель и знаменатель второй и третьей дроби:

Введем замену:

Получим квадратное уравнение:

Решим квадратное уравнение, найдем значения , а затем вернемся к исходному неизвестному.

При решении однородных тригонометрических уравнений, нужно помнить несколько важных вещей:

1. Свободный член можно преобразовать к квадрату синуса и косинуса с помощью основного тригонометрического тождества:

2. Синус и косинус двойного аргумента являются одночленами второй степени - синус двойного аргумента легко преобразовать к произведению синуса и косинуса, а косинус двойного аргумента - к квадрату синуса или косинуса:

Рассмотрим несколько примеров решения однородных тригонометрических уравнений.

1 . Решим уравнение:

Это классический пример однородного тригонометрического уравнения первой степени: степень каждого одночлена равна единице, свободный член равен нулю.

Прежде чем делить обе части уравнения на , необходимо проверить, что корни уравнения не являются корнями исходного уравнения. Проверяем: если , то title="sin{x}0">, следовательно их сумма не равна нулю.

Разделим обе части уравнения на .

Получим:

, где

, где

Ответ: , где

2 . Решим уравнение:

Это пример однородного тригонометрического уравнения второй степени. Мы помним, что если мы можем разложить левую часть уравнения на множители, то желательно это сделать. В этом уравнении мы можем вынести за скобки . Сделаем это:

Решение первого уравнения: , где

Второе уравнение - однородное тригонометрическое уравнение первой степени. Чтобы его решить, разделим обе части уравнения на . Получим:

Ответ: , где ,

3 . Решим уравнение:

Чтобы это уравнение "стало" однородным, преобразуем в произведение, и представим число 3 в виде суммы квадратов синуса и косинуса:

Перенесем все слагаемые влево, раскроем скобки и приведем подобные члены. Получим:

Разложим левую часть на множители и приравняем каждый множитель к нулю:

Ответ: , где ,

4 . Решим уравнение:

Мы видим, что можем вынести за скобки . Сделаем это:

Приравняем каждый множитель к нулю:

Решение первого уравнения:

Второе уравнение совокупности представляет собой классическое однородное уравнение второй степени. Корни уравнения не являются корнями исходного уравнения, поэтому разделим обе части уравнения на :

Решение первого уравнения:

Решение второго уравнения.

Учитель: Синицина С.И.

МБОУ СОШ №20 им.Милевского Н.И.

Тема: Однородные тригонометрические уравнения (10 класс)

Цели: Ввести понятие однородных тригонометрических уравнений I и II степени;

Сформулировать и отработать алгоритм решения однородных тригонометрических

уравнений I и II степени;

Закрепить навыки решения всех видов тригонометрических уравнений через

развитие и совершенствование умений применять имеющиеся знания в изменённой

ситуации, через умение делать выводы и обобщение

Воспитание у учащихся аккуратности, культуры поведения.

Тип урока: урок формирования новых знаний.

Оборудование: компьютер, мультимедийный проектор, экран, доска, презентация

Ход урока

I. Организационный момент

Приветствие учащихся, мобилизация внимания.

II. Актуализация опорных знаний (Домашняя работа проверяется консультантами до урока. Учитель подводит итог выполнения домашнего задания.)

Учитель: Мы продолжаем изучение темы “Тригонометрические уравнения”. Сегодня на уроке мы познакомимся с вами с еще одним видом тригонометрических уравнений и методами их решения и поэтому повторим изученное. Все виды тригонометрических уравнений при решении сводятся к решению простейших тригонометрических уравнений.

Устная работа

  1. Какое уравнение мы называем тригонометрическим?
  2. Назовите алгоритм решения уравнения cos t = a
  3. Назовите алгоритм решения уравнения sin t = a

III. Мотивация обучения.

Учитель: нам предстоит работа по разгадыванию кроссворда. Разгадав его, мы узнаем название нового вида уравнений, которые научимся решать сегодня на уроке.

Вопросы спроецированы на доску. Разгадав кроссворд, ребята прочитают слово “однородные”.

1.Значение переменной, обращающее уравнение вверное равенство? (Корень)

2.Единица измерения углов? (Радиан)

3.Числовой множитель в произведении?(Коэффициент)

4.Раздел математики, изучающий тригонометрические функции? (Тригонометрия)

5.Какая математическая модель необходима для введения тригонометрических функций?(Окружность)

6.Какая из тригонометрических функций четная?(Косинус)

7.Как называется верное равенство? (Тождество)

8.Равенство с переменной? (Уравнения)

9.Уравнения, имеющие одинаковые корни? (Равносильные)

10.Множество корней уравнения? (Решение)

IV. Объяснение новой темы

Учитель: Тема урока “Однородные тригонометрические уравнения”.

Запишем тему урока в тетрадь. Однородные тригонометрические уравнения бывают первой и второй степени.

Запишем определение однородного уравнения первой степени. Я на примере показываю решение такого вида уравнения, вы составляете алгоритм решения однородного тригонометрического уравнения первой степени.

Уравнение вида а sinx + b cosx = 0 называют однородным тригонометрическим уравнение первой степени.

Рассмотрим решение уравнения, когда коэффициенты а и в отличны от 0.

Пример1: 2sinx - 3cosx = 0

Разделив обе части уравнения почленно на cosx, получим

2sinx/ cosx - 3cosx/ cosx = 0

2 tgx -3 =0, tgx =3/2, x = arctg3/2 + πn, nє Z,

Внимание! Делить на одно и то же выражение можно лишь в том случае, если это выражение нигде не обращается в 0. Анализируем. Если косинус равен 0, то, чтобы всё выражение обратилось в 0, синус должен быть тоже равен 0 (учитываем, что коэффициенты отличны от 0). Но мы знаем, что синус и косинус обращаются в нуль в различных точках. Поэтому такую операцию производить можно при решении этого вида уравнений.

Уравнение вида а sin mx + b cos mx = 0 тоже называют однородным тригонометрическим уравнение первой степени и решают также делением обеих частей уравнения на cos mх.

Уравнение вида a sin 2 x + b sinx cosx + c cos 2 x = 0 называют однородным тригонометрическим уравнением второй степени.

Пример 2: sin 2 x – 3 sinx cosx +2 cos 2 x = 0

Коэффициент а отличен от 0 и поэтому как и в предыдущем уравнении соsх 0 и поэтому можно воспользоваться способом деления обеих частей уравнения на соs 2 х.

Получим tg 2 x – 3 tgx +2 = 0

Решаем путем введения новой переменной пусть tgx = а, тогда получаем уравнение

а 2 -3 а +2 = 0 а 1 = 1 а 2 = 2

Возвращаемся к замене

tgx =1, x = ¼π+ πn, nє Z tgx = 2 , x = arctg 2 + πn, nє Z

Ответ: x = ¼π + πn, nє Z, x = arctg 2 + πn, nє Z

Если коэффициент а = 0, то уравнение примет вид –3sinx cosx + 2cos 2 x = 0 решаем способом вынесения общего множителя – cosx за скобки: – cosx (3 sinx – 2cosx) = 0,

cosx = 0 или 3sinx – 2cosx = 0. Второе уравнение является однородным уравнением первой степени.

Если коэффициент с = 0, то уравнение примет вид sin 2 x -3sinx cosx = 0 решаем способом вынесения общего множителя sinx за скобки: sinx (sinx -3 cosx) = 0,

sinx = 0 или sinx -3 cosx = 0. Второе уравнение является однородным уравнением первой степени.

Алгоритм решения однородного тригонометрического уравнения второй степени:

1.Посмотреть, есть ли в уравнении член a sin 2 x.

2.Если член asin 2 x в уравнении содержится (т.е. а 0), то уравнение решается делением

обеих частей уравнения на cos 2 x и последующим введение новой переменной а = tgx

3. Если член asin 2 x в уравнении не содержится (т.е. а = 0), то уравнение решается методом разложения на множители: за скобки выносят cosx.

Однородные уравнения вида a sin 2 mx + b sin mx cos mx + c cos 2 mx = 0 решаются таким же способом

V. Усвоение новых знаний

Являются ли однородными данные уравнения?

  1. sin x = 2 cos x
  2. sin 5x + cos 5x = 0
  3. sin 3x - cos 3x = 2
  4. sin 2 8x – 5 sin8x cos8x +2 cos 2 8x =0

V I. Физкультминутка

V II. Формирование навыков решения однородных тригонометрических уравнений

Открываем задачники стр.47 № 18.10(а), № 18.11 (а,б),18.12(г)

VI II. Самостоятельная работа (учащиеся выбираю дифференцированные задания по двум вариантам)

1 вариант 2 вариант

1) sinx + 2cosx = 0. 1) sinx - 4cosx = 0.

2) sin 2 x + 2sinx cosx -3 cos 2 x = 0 2) sin 2 x – 4 sinx cosx +3 cos 2 x = 0

3) 2sin 2 2x – 5 sin2x cos2x +2 cos 2 2x = 0 3) 3sin 2 3x +10 sin3x cos3x +3 cos 2 3x = 0

Правильные ответы проецируются на доску.

IX. Подведение итогов урока, выставление оценок

С каким видом тригонометрических уравнений мы познакомились на уроке?

Какие уравнения мы называем однородными?

Сформулируйте алгоритмы решения однородных тригонометрических уравнений первой и второй степени.

X. Задание на дом: Cоставить и решить 2 однородных уравнения первой степени и 1 однородное уравнение второй степени



Поделиться