Коэффициент теплопроводности воздушной прослойки. Ограждения с воздушными прослойками

Слои, материалы

(поз. в табл. СП )

Термическое сопротивление

R i =  i /l i , м 2 ×°С/Вт

Тепловая инерция

D i = R i s i

Сопротивление паропроницанию

R vp,i =  i /m i , м 2 ×чПа/мг

Внутренний пограничный слой

Внутренняя штукатурка из цем.-песч. раствора (227)

Железобетон(255)

Плиты минераловатные (50)

Воздушная прослойка

Наружный экран – керамогранит

Наружный пограничный слой

Итого ()

* – без учёта паропроницаемости швов экрана

    Термическое сопротивление замкнутой воздушной прослойки принимается по таблице 7 СП .

    Принимаем коэффициент теплотехнической неоднородности конструкции r = 0,85, тогдаR req /r = 3,19/0,85 = 3,75 м 2 ×°С/Вт и требуемая толщина утеплителя

0,045(3,75 – 0,11 – 0,02 – 0,10 – 0,14 – 0,04) = 0,150 м.

    Принимаем толщину утеплителя  3 = 0,15 м = 150 мм (кратно 30 мм), и добавляем в табл. 4.2.

Выводы:

    По сопротивлению теплопередаче конструкция соответствует нормам, так как приведённое сопротивление теплопередаче R 0 r выше требуемого значенияR req :

R 0 r =3,760,85 = 3,19> R req = 3,19 м 2 ×°С/Вт.

4.6. Определение теплового и влажностного режима вентилируемой воздушной прослойки

    Расчёт проводим для условий зимнего периода.

Определение скорости движения и температуры воздуха в прослойке

    Чем длиннее (выше) прослойка, тем больше скорость движения воздуха и его расход, а, следовательно, и эффективность выноса влаги. С другой стороны, чем длиннее (выше) прослойка, тем больше вероятность недопустимого влагонакопления в утеплителе и на экране.

    Расстояние между входными и выходными вентиляционными отверстиями (высоту прослойки) принимаем равным Н = 12 м.

    Среднюю температуру воздуха в прослойке t 0 предварительно принимаем как

t 0 = 0,8t ext = 0,8(-9,75) = -7,8°С.

    Скорость движения воздуха в прослойке при расположении приточных и вытяжных отверстий на одной стороне здания:

где – сумма местных аэродинамических сопротивлений течению воздуха на входе, на поворотах и на выходе из прослойки; в зависимости от конструктивного решения фасадной системы= 3…7; принимаем= 6.

    Площадь сечения прослойки условной шириной b = 1 м и принятой (в табл. 4.1) толщиной = 0,05 м:F =b = 0,05 м 2 .

    Эквивалентный диаметр воздушной прослойки:

    Коэффициент теплоотдачи поверхности воздушной прослойки a 0 предварительно принимаем по п. 9.1.2 СП :a 0 = 10,8 Вт/(м 2 ×°С).

(м 2 ×°С)/Вт,

K int = 1/R 0,int = 1/3,67 = 0,273Вт/(м 2 ×°С).

(м 2 ×°С)/Вт,

K ext = 1/R 0, ext = 1/0,14 = 7,470 Вт/(м 2 ×°С).

    Коэффициенты

0,35120 + 7,198(-8,9) = -64,72 Вт/м 2 ,

0,351 + 7,198 =7,470 Вт/(м 2 ×°С).

где с – удельная теплоёмкость воздуха,с = 1000 Дж/(кг×°С).

    Средняя температура воздуха в прослойке отличается от принятой ранее более чем на 5%, поэтому уточняем расчётные параметры.

    Скорость движения воздуха в прослойке:

    Плотность воздуха в прослойке

    Количество (расход) воздуха, проходящего через прослойку:

    Уточняем коэффициент теплоотдачи поверхности воздушной прослойки:

Вт/(м 2 ×°С).

    Сопротивление теплопередаче и коэффициент теплопередачи внутренней части стены:

(м 2 ×°С)/Вт,

K int = 1/R 0,int = 1/3,86 = 0,259Вт/(м 2 ×°С).

    Сопротивление теплопередаче и коэффициент теплопередачи наружной части стены:

(м 2 ×°С)/Вт,

K ext = 1/R 0,ext = 1/0,36 = 2,777Вт/(м 2 ×°С).

    Коэффициенты

0,25920 + 2,777(-9,75) = -21,89 Вт/м 2 ,

0,259 + 2,777 =3,036 Вт/(м 2 ×°С).

    Уточняем среднюю температуру воздуха в прослойке:

    Уточняем ещё несколько раз среднюю температуру воздуха в прослойке, пока значения на соседних итерациях не будут отличаться более, чем на 5% (табл. 4.6).

Передача тепла через воздушную прослойку при разности температур на ее противоположных поверхностях происходит путем конвекции, излучения и теплопроводности (рис. 1.12).

Теплопроводность неподвижного воздуха очень мала и если бы в воздушных прослойках воздух находился в состоянии покоя, их термическое сопротивление было бы очень высоким. В действительности, в воздушных прослойках ограждающих конструкций воздух всегда движется, например, у более теплой поверхности вертикальных прослоек он перемещается вверх, а у холодной - вниз. В прослойках с движущимся воздухом количество тепла, передаваемого путем теплопроводности, очень мало по сравнению с теплопередачей путем конвекции.

По мере увеличения толщины воздушной прослойки количество тепла, передаваемого путем конвекции, возрастает, поскольку влияние трения воздушных струек о стенки уменьшается. Ввиду этого для воздушных прослоек не существует характерной для твердых материалов прямой пропорциональности между увеличением толщины слоя и значением его термического сопротивления.

При передаче тепла конвекцией от более теплой поверхности воздушной прослойки к более холодной, преодолевается сопротивление двух пограничных слоев воздуха, прилегающих к этим поверхностям, поэтому значение коэффициента, который можно было бы принять для свободной конвекции у какой-либо поверхности, уменьшается вдвое.

Количество лучистого тепла, передаваемого от более теплой поверхности к более холодной, не зависит от толщины воздушной прослойки; как говорилось ранее, оно определяется коэффициентом излучения поверхностей и разностью, пропорциональной четвертым степеням их абсолютных температур (1.3).

В общем виде поток тепла Q, передаваемый через воздушную прослойку, может быть выражен таким образом:


где α к - коэффициент теплообмена при свободной конвекции; δ - толщина прослойки, м; λ - коэффициент теплопроводности воздуха в прослойке, ккал·м·ч/град; α л - коэффициент теплообмена за счет излучения.

На основании экспериментальных исследований обычно трактуют величину коэффициента теплопередачи воздушной прослойки как вызванную теплообменом, происходящим путем конвекции и теплопроводности:



но зависящую преимущественно от конвекции (здесь λ экв - условная эквивалентная теплопроводное™ воздуха в прослойке); тогда при постоянном значении Δt термическое сопротивление воздушной прослойки R в.п будет:
Явления конвективного теплообмена в воздушных прослойках зависят от их геометрической формы, размеров и направления потока тепла; особенности этого теплообмена могут быть выражены величиной безразмерного коэффициента конвекции ε, представляющего отношение эквивалентной теплопроводности к теплопроводности неподвижного воздуха ε=λ экв /λ.

Путем обобщения с помощью теории подобия большого количества экспериментальных данных М. А. Михеевым установлена зависимость коэффициента конвекции от произведения критериев Грасгофа и Прандтля, т. е.:


Коэффициенты теплопередачи α к ", полученные из выражения



установленного на основе этой зависимости при t ср =+10°, приведены для температурного перепада на поверхностях прослойки, Δt=10° в табл. 1.6.



Относительно небольшие величины коэффициентов передачи тепла через горизонтальные прослойки при потоке тепла сверху вниз (например, в цокольных перекрытиях отапливаемых зданий) объясняются малой подвижностью воздуха в таких прослойках; наиболее теплый воздух сосредоточивается у более нагретой верхней поверхности прослойки, затрудняя конвективный теплообмен.

Величина передачи тепла излучением α л, определяемая на основе формулы (1.12), зависит от коэффициентов излучения и температуры; для получения α л в плоских протяженных прослойках достаточно умножить приведенный коэффициент взаимооблучения С" на соответствующий температурный коэффициент принятый по табл. 1.7.



Так, например, при С"=4,2 и средней температуре прослойки, равной 0°, получим α л =4,2·0,81=3,4 ккал/м 2 ·ч·град.

В летних условиях величина α л увеличивается, а термическое сопротивление прослоек уменьшается. Зимой, для прослоек, расположенных в наружной части конструкций, отмечается обратное явление.

Для применения в практических расчетах нормы строительной теплотехники ограждающих конструкций СНиП приводят значения термических сопротивлений замкнутых воздушных прослоек



указанные в табл. 1.8.

Величины R в.пр, приведенные в таблице, соответствуют разности температур на поверхностях прослоек, равной 10°. При разности температур 8°, величина R в.пр умножается на коэффициент 1,05, а при разности 6° - на 1,10.

Приведенные данные о термическом сопротивлении относятся к замкнутым плоским воздушным прослойкам. Под замкнутыми понимаются воздушные прослойки, ограниченные непроницаемыми материалами, изолированные от проницания воздуха извне.

Поскольку пористые строительные материалы воздухопроницаемы, к замкнутым могут быть отнесены, например, воздушные прослойки в конструктивных элементах из плотного бетона или других плотных материалов, практически не пропускающих воздуха при тех величинах разности давлений, которые типичны для эксплуатируемых зданий.

Экспериментальные исследования показывают, что термическое сопротивление воздушных прослоек в кирпичной кладке снижается примерно вдвое по сравнению с величинами, указанными в табл. 1.8. При недостаточном заполнении швов между кирпичами раствором (например, при выполнении работ в зимних условиях) воздухопроницаемость кладки может возрасти, а термическое сопротивление воздушных прослоек приблизиться к нулю. Достаточная защита конструкций с воздушными прослойками от воздухопроницания является совершенно необходимой для обеспечения требуемых теплофизических свойств ограждающих конструкций.



Иногда в бетонных или керамических блоках предусматривают прямоугольные пустоты небольшой длины, часто приближающиеся к квадратной форме. В таких пустотах передача лучистого тепла возрастает за счет дополнительного излучения боковых стенок. Прирост величины α л незначителен при отношении длины прослойки к ее толщине, равной 3:1 или более; в пустотах квадратной или круглой формы этот прирост достигает 20%. Эквивалентный коэффициент теплопроводности, учитывающий передачу тепла конвекцией и излучением в квадратных и круглых пустотах значительных размеров (70-100 мм) существенно возрастает, в связи с чем использование таких пустот в материалах с ограниченной теплопроводностью (0,50 ккал/м·ч·град и менее) не имеет смысла с точки зрения теплофизики. Применение квадратных или круглых пустот указанного размера в изделиях из тяжелых бетонов имеет главным образом экономическое значение (уменьшение веса); это значение утрачивается для изделий из легких и ячеистых бетонов, поскольку использование таких пустот может привести к понижению термического сопротивления ограждающих конструкций.

В противоположность этому, применение плоских тонких воздушных прослоек, особенно при многорядном их расположении в шахматном порядке (рис. 1.13), целесообразно. При однорядном размещении воздушных прослоек более эффективно их расположение в наружной части конструкции (если обеспечена ее воздухонепроницаемость), поскольку термическое сопротивление таких прослоек в холодный период года возрастает.

Применение воздушных прослоек в утепленных цокольных перекрытиях над холодными подпольями более рационально, чем в наружных стенах, поскольку передача тепла конвекцией в горизонтальных прослойках этих конструкций существенно уменьшается.

Теплофизическая эффективность воздушных прослоек в летних условиях (защита от перегрева помещений) снижается по сравнению с холодным периодом года; однако эта эффективность возрастает за счет использования прослоек, вентилируемых в ночное время наружным воздухом.

При проектировании полезно иметь в виду, что ограждающие конструкции с воздушными прослойками обладают меньшей влажностной инерцией по сравнению со сплошными. В сухих условиях конструкции с воздушными прослойками (вентилируемыми и замкнутыми) быстро подвергаются естественной сушке и приобретают дополнительные теплозащитные свойства за счет малой влажности материала; во влажных помещениях наоборот - конструкции с замкнутыми прослойками могут сильно переувлажняться, что связано с потерей теплофизических качеств и вероятностью преждевременного их разрушения.

Из предыдущего изложения было видно, что передача тепла через воздушные прослойки в большой мере зависит рт излучения. Однако применение отражательной изоляции с ограниченной долговечностью (алюминиевой фольги, окраски и т. д.) для повышения термического сопротивления воздушных прослоек может быть целесообразным только в конструкциях сухих зданий с ограниченным сроком службы; в сухих капитальных зданиях дополнительный эффект отражательной изоляции также полезен, но следует учитывать, что даже при утрате ее отражательных качеств теплофизические свойства конструкций должны быть не менее требуемых с тем, чтобы обеспечить нормальную эксплуатацию конструкций.

В каменных и бетонных конструкциях с большой начальной влажностью (а также во влажных помещениях) использование алюминиевой фольги, утрачивает смысл, так как ее отражательные свойства могут быть быстро нарушены из-за коррозии алюминия во влажной щелочной среде. Применение отражательной изоляции наиболее эффективно в горизонтальных замкнутых воздушных прослойках при направлении потока тепла сверху вниз (цокольные перекрытия и т. д.), т. е. в том случае, когда конвекция почти отсутствует и передача тепла происходит в основном путем излучения.


Отражательной изоляцией достаточно покрыть только одну из поверхностей воздушной прослойки (более теплую, сравнительно гарантированную от эпизодического появления конденсата, быстро ухудшающего отражательные свойства изоляции).

Возникающие иногда предложения о теплофизической целесообразности разделения воздушных прослоек по толщине экранами из тонкой алюминиевой фольги в целях резкого уменьшения потока лучистого тепла не могут быть использованы для ограждающих конструкций капитальных зданий, поскольку малая эксплуатационная надежность такой теплозащиты не соответствует необходимой долговечности конструкций указанных зданий.

Расчетное значение термического сопротивления воздушной прослойки с отражательной изоляцией на более теплой поверхности повышается примерно вдвое по сравнению с величинами, указанными в табл. 1.8.

В южных районах конструкции с воздушными прослойками обладают достаточной эффективностью в отношении защиты помещений от перегрева; применение отражательной изоляции приобретает в этих условиях особенно большой смысл, поскольку превалирующая часть тепла передается в жаркое время года излучением. Целесообразно в целях повышения теплозащитных свойств ограждений и снижения их веса, экранировать наружные стены многоэтажных зданий лучеотражающими долговечными отделками (например, полированными алюминиевыми листами) с тем, чтобы под экранами была расположена воздушная прослойка, другая поверхность которой покрыта окрасочной или иной экономичной отражательной изоляцией.

Усиление конвекции в воздушных прослойках (например, за счет активного вентилирования их наружным воздухом, поступающим с затененных, озелененных и обводненных участков прилегающей территории) превращается для летнего периода в положительный теплофизический процесс, в противоположность зимним условиям, когда этот вид переноса тепла, в большинстве случаев, совершенно нежелателен.

В таблице приведены значения теплопроводности воздуха λ в зависимости от температуры при нормальном атмосферном давлении.

Величина коэффициента теплопроводности воздуха необходима при расчетах теплообмена и входит в состав чисел подобия, например таких, как число Прандтля, Нуссельта, Био.

Теплопроводность выражена в размерности и дана для газообразного воздуха в интервале температуры от -183 до 1200°С. Например, при температуре 20°С и нормальном атмосферном давлении теплопроводность воздуха равна 0,0259 Вт/(м·град) .

При низких отрицательных температурах охлажденный воздух имеет малую теплопроводность, например при температуре минус 183°С, она составляет всего 0,0084 Вт/(м·град).

По данным таблицы видно, что с ростом температуры теплопроводность воздуха увеличивается . Так, при увеличении температуры с 20 до 1200°С, величина теплопроводности воздуха возрастает с 0,0259 до 0,0915 Вт/(м·град), то есть более чем в 3,5 раза.

Теплопроводность воздуха в зависимости от температуры — таблица
t, °С λ, Вт/(м·град) t, °С λ, Вт/(м·град) t, °С λ, Вт/(м·град) t, °С λ, Вт/(м·град)
-183 0,0084 -30 0,022 110 0,0328 450 0,0548
-173 0,0093 -20 0,0228 120 0,0334 500 0,0574
-163 0,0102 -10 0,0236 130 0,0342 550 0,0598
-153 0,0111 0 0,0244 140 0,0349 600 0,0622
-143 0,012 10 0,0251 150 0,0357 650 0,0647
-133 0,0129 20 0,0259 160 0,0364 700 0,0671
-123 0,0138 30 0,0267 170 0,0371 750 0,0695
-113 0,0147 40 0,0276 180 0,0378 800 0,0718
-103 0,0155 50 0,0283 190 0,0386 850 0,0741
-93 0,0164 60 0,029 200 0,0393 900 0,0763
-83 0,0172 70 0,0296 250 0,0427 950 0,0785
-73 0,018 80 0,0305 300 0,046 1000 0,0807
-50 0,0204 90 0,0313 350 0,0491 1100 0,085
-40 0,0212 100 0,0321 400 0,0521 1200 0,0915

Теплопроводность воздуха в жидком и газообразном состояниях при низких температурах и давлении до 1000 бар

В таблице приведены значения теплопроводности воздуха при низких температурах и давлении до 1000 бар.
Теплопроводность выражена в Вт/(м·град), интервал температуры от 75 до 300К (от -198 до 27°С).

Величина теплопроводности воздуха в газообразном состоянии увеличивается с ростом давления и температуры .
Воздух в жидком состоянии с ростом температуры имеет тенденцию к снижению коэффициента теплопроводности.

Черта под значениями в таблице означает переход жидкого воздуха в газ — цифры под чертой относятся к газу, а выше ее — к жидкости.
Смена агрегатного состояния воздуха существенно сказывается на значении коэффициента теплопроводности — теплопроводность жидкого воздуха значительно выше .

Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Теплопроводность газообразного воздуха при температуре от 300 до 800К и различном давлении

В таблице приведены значения теплопроводности воздуха при различных температурах в зависимости от давления от 1 до 1000 бар.
Теплопроводность выражена в Вт/(м·град), интервал температуры от 300 до 800К (от 27 до 527°С).

По данным таблицы видно, что с ростом температуры и давления теплопроводность воздуха увеличивается.
Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Теплопроводность воздуха при высоких температурах и давлении от 0,001 до 100 бар

В таблице приведены значения теплопроводности воздуха при высоких температурах и давлении от 0,001 до 1000 бар.
Теплопроводность выражена в Вт/(м·град), интервал температуры от 1500 до 6000К (от 1227 до 5727°С).

С ростом температуры молекулы воздуха диссоциирует и максимальное значение его теплопроводности достигается при давлении (разряжении) 0,001 атм. и температуре 5000К.
Примечание: Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Зазоры, доступные потокам воздуха, являются продухами, ухудшающими теплоизоляционные характеристики стен. Зазоры же замкнутые (так же как закрытые поры вспененного материала) являются теплоизолирующими элементами. Ветронепродуваемые пустоты широко применяются в строительстве для снижения теплопотерь через ограждающие конструкции (щели в кирпичах и блоках, каналы в бетонных панелях, зазоры в стеклопакетах и т. п.). Пустоты в виде непродуваемых воздушных прослоек используются и в стенах бань, в том числе каркасных. Эти пустоты зачастую являются основными элементами теплозащиты. В частности, именно наличие пустот с горячей стороны стены позволяет использовать легкоплавкие пенопласты (пенополистирол и пенополиэтилен) в глубинных зонах стен высокотемпературных бань.

В то же время пустоты в стенах являются самыми коварными элементами. Стоит в малейшей степени нарушить ветроизоляцию, и вся система пустот может стать единым продуваемым выхолаживающим продухом, выключающим из системы теплоизоляции стен все внешние теплоизоляционные слои. Поэтому пустоты стараются делать небольшими по размеру и гарантированно изолируют друг от друга.

Использовать понятие теплопроводности воздуха (а тем более использовать ультранизкое значение коэффициента теплопроводности неподвижного воздуха 0,024 Вт/м град) для оценки процессов теплопередачи через реальный воздух невозможно, поскольку воздух в крупных пустотах является крайне подвижной субстанцией. Поэтому на практике для теплотехнических расчётов процессов передачи тепла даже через условно «неподвижный» воздух применяют эмпирические (опытные, экспериментальные) соотношения. Чаще всего (в простейших случаях) в теории теплопередачи считается, что тепловой поток из воздуха на поверхность тела в воздухе равен Q = α∆Т , где α - эмпирический коэффициент теплопередачи «неподвижного» воздуха, ∆Т - разность температур поверхности тела и воздуха. В обычных условиях жилых помещений коэффициент теплопередачи равен ориентировочно α = 10 Вт/м² град. Именно этой цифры мы будем придерживаться при оценочных расчётах прогрева стен и тела человека в бане. При помощи потоков воздуха со скоростью V (м/сек), тепловой поток увеличивается на величину конвективной составляющей Q=βV∆T , где β примерно равен 6 Вт сек/м³ град . Все величины зависят от пространственной ориентации и шероховатости поверхности. Так, по действующим нормам СНиП 23-02-2003 коэффициент теплопередачи от воздуха к внутренним поверхностям ограждающих конструкций принимается равным 8,7 Вт/м² град для стен и гладких потолков со слабо выступающими рёбрами (при отношении высоты рёбер «h» к расстоянию «а» между гранями соседних рёбер h/a < 0,3); 7,6 Вт/м² град для потолков с сильно выступающими рёбрами (при отношении h/a > 0,3); 8,0 Вт/м² град для окон и 9,9 Вт/м² град для зенитных фонарей. Финские специалисты принимают коэффициент теплопередачи в «неподвижном» воздухе сухих саун равным 8 Вт/м² град (что в пределах ошибок измерений совпадает с принимаемым нами значением) и 23 Вт/м² град при наличии потоков воздуха со скоростью в среднем 2 м/сек.

Столь малое значение коэффициента теплопередачи в условно «неподвижном» воздухе α = 10 Вт/м² град соответствует понятию воздуха как теплоизолятора и объясняет необходимость использования высоких температур в саунах для быстрого согрева тела человека. Применительно же к стенам это означает, что при характерных теплопотерях через стены бани (50- 200) Вт/м² разница температур воздуха в бане и температур внутренних поверхностей стен бани может достигать (5-20)°С. Это очень большая величина, часто никак и никем не учитывающаяся. Наличие в бане сильной конвекции воздуха позволяет снизить перепад температуры вдвое. Отметим, что столь высокие перепады температур, характерные для бань, недопустимы в жилых помещениях. Так, нормируемый в СНиП 23-02-2003 температурный перепад между воздухом и стенами не должен превышать 4°С в жилых помещениях, 4,5°С в общественных и 12°С в производственных. Более высокие перепады температур в жилых помещениях неминуемо приводят к ощущениям холода от стен и выпадению росы на стенах.

Используя введенное понятие коэффициента теплопередачи от поверхности в воздух, пустоты внутри стены можно рассматривать как последовательное расположение теплопередающих поверхностей (см. рис. 35). Пристеночные зоны воздуха, где и наблюдаются вышеуказанные перепады температур ∆T, называются пограничными слоями. Если в стене (или стеклопакете) имеются два пустотных промежутка (например, три стекла), то фактически имеется 6 пограничных слоев. Если через такую стену (или стеклопакет) проходит тепловой поток 100 Вт/м², то на каждом пограничном слое температура изменяется на ∆T = 10°С , а на всех шести слоях перепад температуры составляет 60°С. Учитывая, что тепловые потоки через каждый в отдельности пограничный слой и через всю стену в целом равны между собой и составляют всё же 100 Вт/м², то результирующий коэффициент теплопередачи для стены без пустот («стеклопакет» с одним стеклом) составит 5 Вт/м² град, для стены с одной пустотной прослойкой (стеклопакет с двумя стёклами) 2,5 Вт/м² град, а с двумя пустотными прослойками (стеклопакет с тремя стёклами) 1,67 Вт/м² град. То есть, чем больше пустот (или чем больше стёкол), тем теплей стена. При этом теплопроводность самого материала стен (стёкол) в этом расчёте предполагалась бесконечно большой. Иными словами, даже из очень «холодного» материала (например, стали) можно в принципе изготовить очень тёплую стену, предусмотрев лишь наличие в стене множества воздушных прослоек. Собственно, на этом принципе и работают все стеклянные окна.

Для упрощения оценочных расчётов удобней использовать не коэффициент теплопередачи α, а его обратную величину - сопротивление теплопередаче (термическое сопротивление пограничного слоя) R = 1/ α . Термическое сопротивление двух пограничных слоев, отвечающее одному слою материала стены (одного стекла) или одному воздушному промежутку (прослойке), равно R = 0,2 м² град/Вт , а трёх слоев материала стены (как на рисунке 35) - сумме сопротивлений шести пограничных слоев, то есть 0,6 м² град/Вт. Из определения понятия сопротивления теплопередаче Q =∆T/R следует, что при том же тепловом потоке 100 Вт/м² и термическом сопротивлении 0,6 м² град/Вт перепад температуры на стене с двумя воздушными прослойками составит те же 60°С. Если же число воздушных прослоек увеличить до девяти, то перепад температуры на стене при том же тепловом потоке 100 Вт/м² составит 200°С, то есть расчётная температура внутренней поверхности стены в бане при тепловом потоке 100 Вт/м² повысится с 60 °С до 200°С (если на улице 0°С).

Коэффициент теплопередачи является результирующим показателем, комплексно суммирующим последствия всех физических процессов, происходящих в воздухе у поверхности теплоотдающего или тепловоспринимающего тела. При малых перепадах температур (и малых тепловых потоках) конвективные потоки воздуха малы, теплопередача в основном происходит кондуктивно за счёт теплопроводности неподвижного воздуха. Толщина пограничного слоя составляла бы малую величину, всего лишь a=λR=0,0024 м, где λ=0,024 Вт/м град - коэффициент теплопроводности неподвижного воздуха, R=0,1 м²град/Вт -термическое сопротивление пограничного слоя. В пределах пограничного слоя воздух имеет разные температуры, вследствие чего за счёт гравитационных сил воздух у горячей вертикальной поверхности начинает всплывать (а у холодной - погружаться), набирая скорость, и турбулизируется (взвихривается). За счёт вихрей теплопередача воздуха увеличивается. Если вклад этой конвективной составляющей формально ввести в значение коэффициента теплопроводности λ, то увеличение этого коэффициента теплопроводности будет отвечать формальному увеличению толщины пограничного слоя a=λR (как мы увидим ниже, примерно в 5-10 раз с 0,24 см до 1-3 см). Ясно, что это формально увеличенная толщина пограничного слоя корреспондируется с размерами воздушных потоков и вихрей. Не углубляясь в тонкости структуры пограничного слоя, отметим, что значительно большее значение имеет понимание того, что передающееся в воздух тепло может «улететь» вверх с конвективным потоком, так и не достигнув следующей пластины многослойной стены или следующего стекла стеклопакета. Это отвечает случаю калориферного нагрева воздуха, который будет рассмотрен ниже при анализе экранированных металлических печей. Здесь же мы рассматриваем случай, когда воздушные потоки в прослойке имеют ограниченную высоту, например, в 5-20 раз превышающую толщину прослойки δ. При этом в воздушных прослойках возникают циркуляционные потоки, которые фактически участвуют в переносе тепла совместно с кондуктивными потоками тепла.

При малых толщинах воздушных прослоек встречные потоки воздуха у противоположных стенок зазора начинают влиять друг на друга (перемешиваются). Иными словами, толщина воздушной прослойки становится меньше двух невозмущенных пограничных слоев, вследствие чего коэффициент теплопередачи увеличивается, а сопротивление теплопередачи соответственно уменьшается. Кроме того, при повышенных температурах стенок воздушных прослоек начинают играть роль процессы теплопередачи излучением. Уточнённые данные в соответствии с официальными рекомендациями СНиП П-3-79* приводятся в таблице 7, откуда видно, что толщина невозмущенных пограничных слоев составляет 1-3 см, но существенное изменение теплопередачи наступает лишь при толщинах воздушных прослоек менее 1 см. Это означает, в частности, что воздушные промежутки между стёклами в стеклопакете не следует делать толщиной менее 1 см.

Таблица 7. Термическое сопротивление замкнутой воздушной прослойки, м² град/Вт

Толщина воздушной прослойки, см для горизонтальной прослойки при потоке тепла снизу вверх или для вертикальной прослойки для горизонтальной прослойки при потоке тепла сверху вниз
при температуре воздуха в прослойке
положительной отрицательной положительной отрицательной
1 0,13 0,15 0,14 0,15
2 0,14 0,15 0,15 0,19
3 0,14 0,16 0,16 0,21
5 0,14 0,17 0,17 0,22
10 0,15 0,18 0,18 0,23
15 0,15 0,18 0,19 0,24
20-30 0,15 0,19 0,19 0,24

Их таблицы 7 также следует, что более тёплые воздушные прослойки имеют более низкие термические сопротивления (лучше пропускают через себя тепло). Это объясняется влиянием на теплоперенос лучистого механизма, который мы рассмотрим в следующем разделе. Отметим при этом, что вязкость воздуха растёт с температурой, так что тёплый воздух турбулизуется хуже.


Рис. 36. . Обозначения те же, что и на рисунке 35. За счёт низкой теплопроводности материала стенок возникают перепады температур ∆Тc = QRc , где Rc - термическое сопротивление стенки Rc = δc / λc (δc - толщина стенки, λc - коэффициент теплопроводности материала стенки). При увеличении с перепады температур ∆Тc уменьшаются, но перепады температур на пограничных слоях ∆Т сохраняются неизменными. Это иллюстрируется распределением Твнутр, относящимся к случаю более высокой теплопроводности материала стенок. Тепловой поток через всю стену Q = ∆T/R = ∆Тc/Rc = (Твнутр - Tвнешн) /(3Rc+6R) . Термическое сопротивление пограничных слоев R и их толщина а не зависят от теплопроводности материала стенок λc и их термического сопротивления Rc.
Рис. 37. : а - три слоя металла (или стекла), отстоящих друг от друга с зазорами по 1,5 см, эквивалентны древесине (деревянной доске) толщиной 3,6 см; б - пять слоев металла с зазорами по 1,5 см, эквивалентны древесине толщиной 7,2 см; в - три слоя фанеры толщиной по 4 мм с зазорами по 1,5 см, эквивалентны древесине толщиной 4,8 см; г - три слоя пенополиэтилена толщиной по 4 мм с зазорами по 1,5 см, эквивалентны древесине толщиной 7,8 см; д - три слоя металла с зазорами по 1,5 см, заполненными эффективным утеплителем (пенополистиролом, пенополиэтиленом или минватой), эквивалентны древесине толщиной 10,5 см. Принятая величина зазоров является условной, эквивалентные толщины древесины в примерах а-г слабо изменяются при изменении величины зазоров в пределах (1-30) см.

Если конструкционный материал стены обладает низкой теплопроводностью, то при расчётах необходимо учитывать его вклад в теплосопротивление стены (рис. 36). Хотя вклад пустот, как правило, является значительным, заполнение всех пустот эффективным утеплителем позволяет (за счёт полной остановки движения воздуха) существенно (в 3-10 раз) повысить тепловое сопротивление стены (рис. 37).

Сама по себе возможность получения вполне пригодных для бань (по крайней мере, летних) тёплых стен из нескольких слоев «холодного» металла, конечно же, интересна и используется, например, финнами для противопожарной защиты стен в саунах около печи. На практике, однако, такое решение оказывается весьма сложным ввиду необходимости механической фиксации параллельных слоев металла многочисленными перемычками, которые играют роль нежелательных «мостиков» холода. Так или иначе, даже один слой металла или ткани «греет», если не продувается ветром. На этом явлении основаны палатки, юрты, чумы, которые, как известно, до сих пор используются (и использовались веками) в качестве бань в кочевых условиях. Так, один слой ткани (всё равно какой, лишь бы непродуваемой) лишь в два раза «холодней» кирпичной стены толщиной 6 см, а прогревается в сотни раз быстрее. Тем не менее, ткань палатки остаётся намного холодней воздуха в палатке, что не позволяет реализовать сколько бы то ни было длительных паровых режимов. К тому же, любые (даже мелкие) порывы ткани сразу же приводят к мощным конвективным теплопотерям.

Наибольшее значение в бане (так же как и в жилых зданиях) имеют воздушные прослойки в окнах. При этом приведённое сопротивление теплопередаче окон измеряется и рассчитывается на всю площадь оконного проёма, то есть не только на стеклянную часть, но и на переплёт (деревянный, стальной, алюминиевый, пластиковый), который, как правило, имеет лучшие теплоизолирующие характеристики, чем стекло. Для ориентировки приведём нормативные значения термического сопротивления окон разных типов по СНиП П-3-79* и сотовых материалов с учётом теплового сопротивления внешних пограничных слоев внутри и вне помещения (см. таблицу 8).

Таблица 8. Приведенное сопротивление теплопередаче окон и оконных материалов

Тип конструкции Сопротивление теплопередаче, м² град/Вт
Одинарное остекление 0,16
Двойное остекление в спаренных переплётах 0,40
Двойное остекление в раздельных переплётах 0,44
Тройное остекление в раздельно-спаренных переплётах 0,55
Четырёхслойное остекление в двух спаренных переплётах 0,80
Стеклопакет с межстекольным расстоянием 12 мм: однокамерный 0,38
двухкамерный 0,54
Блоки стеклянные пустотные (с шириной швов 6 мм) размером: 194x194x98 мм 0,31
244x244x98 мм 0,33
Поликарбонат сотовый «Акууег» толщиной: двухслойный 4 мм 0,26
двухслойный 6 мм 0,28
двухслойный 8 мм 0,30
двухслойный 10 мм 0,32
трёхслойный 16 мм 0,43
многоперегородчатый 16 мм 0,50
многоперегородчатый 25 мм 0,59
Полипропилен сотовый «Акувопс!» толщиной: двухслойный 3,5 мм 0,21
двухслойный 5 мм 0,23
двухслойный 10 мм 0,30
Брусовая стена (для сравнения) толщиной: 5 см 0,55
10 см 0,91

Толщина воздушной прослойки,

Термическое сопротивление замкнутой воздушной прослойки

R в.п, м 2 ×°С/Вт

горизонтальной при потоке тепла снизу вверх и вертикальной

горизонтальной при потоке тепла сверху вниз

при температуре воздуха в прослойке

положительной

отрицательной

Положительной

отрицательной

Примечание. При оклейке одной или обеих поверхностей воздушной прослойки алюминиевой фольгой термическое сопротивление следует увеличивать в 2 раза.

Приложение 5*

Схемы теплопроводных включений в ограждающих конструкциях

Приложение 6*

(Справочное)

Приведенное сопротивление теплопередаче окон, балконных дверей и фонарей

Заполнение светового проема

Приведенное сопротивление теплопередаче R o , м 2 *°С/Вт

в деревянных или ПВХ переплетах

в алюминиевых переплетах

1. Двойное остекление в спаренных переплетах

2. Двойное остекление в раздельных переплетах

3. Блоки стеклянные пустотные (с шириной швов 6 мм) размером: 194х194х98

0,31 (без переплета)

0,33 (без переплета)

4. Профильное стекло коробчатого сечения

0,31 (без переплета)

5. Двойное из органического стекла для зенитных фонарей

6. Тройное из органического стекла для зенитных фонарей

7. Тройное остекление в раздельно–спаренных переплетах

8. Однокамерный стеклопакет:

Из обычного стекла

Из стекла с мягким селективным покрытием

9. Двухкамерный стеклопакет:

Из обычного стекла (с межстекольным расстоянием 6 мм)

Из обычного стекла (с межстекольным расстоянием 12 мм)

Из стекла с твердым селективным покрытием

10. Обычное стекло и однокамерный стеклопакет в раздельных переплетах:

Из обычного стекла

Из стекла с твердым селективным покрытием

Из стекла с мягким селективным покрытием

Из стекла с твердым селективным покрытием и заполнением аргоном

11. Обычное стекло и двухкамерный стеклопакет в раздельных переплетах:

Из обычного стекла

Из стекла с твердым селективным покрытием

Из стекла с мягким селективным покрытием

Из стекла с твердым селективным покрытием и заполнением аргоном

12. Два однокамерных стеклопакета в спаренных переплетах

13. Два однокамерных стеклопакета в раздельных переплетах

14. Четырехслойное остекление в двух спаренных переплетах

* в стальных переплетах

Примечания:

1. К мягким селективным покрытиям стекла относят покрытия с тепловой эмиссией менее 0,15, к твердым - более 0,15.

2. Значения приведенных сопротивлений теплопередаче заполнений световых проемов даны для случаев, когда отношение площади остекления к площади заполнения светового проема равно 0,75.

Значения приведенных сопротивлений теплопередаче, указанные в таблице, допускается применять в качестве расчетных в случае отсутствия таких значений в стандартах или технических условиях на конструкции или не подтвержденных результатами испытаний.

3. Температура внутренней поверхности конструктивных элементов окон зданий (кроме производственных) должна быть не ниже 3 °С при расчетной температуре наружного воздуха.



Поделиться