Узел автоматизированного устройства управления. Узел управления отопления: функции, устройство, преимущества

В любой здании, в том числе и в частном доме, присутствует несколько систем жизнеобеспечения. Одна из них – это отопительная система. В частных домах могут использоваться разные системы, которые выбираются в зависимости от размеров постройки, количества этажей, особенностей климата и других факторов. В данном материале мы подробно разберем, что представляет собой тепловой узел отопления, как он работает и где используется. Если у вас уже стоит элеваторный узел, то вам будет полезно узнать про дефекты и способы их устранения. Так выглядит современный элеваторный узел. Здесь изображен агрегат с электроприводом. Также встречаются другие виды этого изделия.

Простыми словами, тепловой узел представляет собой комплекс элементов, служащих для соединения тепловой сети и потребителей тепла. Наверняка у читателей возник вопрос, можно ли установить этот узел самостоятельно. Да, можно, если вы умеете читать схемы. Мы рассмотрим их, причем одна схема будет разобрана подробно.

Принцип работы

Чтобы понять, как работает узел, необходимо привести пример. Для этого мы возьмем трехэтажный дом, так как элеваторный узел применяется именно в многоэтажных домах. Основная часть оборудования, которая относится к этой системе, расположена в подвальном помещении. Лучше понять работу нам поможет схема ниже. Мы видим два трубопровода:

  1. Подающий.
  2. Обратный.

Теперь нужно найти на схеме тепловую камеру, через которую вода отправляется в подвальное помещение. Также можно заметить запорную арматуру, которая должна в обязательном порядке стоять на входе. Выбор арматуры зависит от типа системы. Для стандартной конструкции используют задвижки. Но если речь идет о сложной системе в многоэтажном доме, то мастера рекомендуют брать стальные шаровые краны.

При подключении теплового элеваторного узла необходимо придерживаться норм. В первую очередь это касается температурных режимов в котельных. При эксплуатации допускаются следующие показатели:

  • 150/70°C;
  • 130/70°С;
  • 95(90)/70°C.

Когда температура жидкости находится в пределах 70-95°C, она начинает равномерно распределяться по всей системе за счет работы коллектора. Если же температура превышает 95°C, элеваторный узел начинает работать на ее понижение, так как горячая вода может повредить оборудование в доме, а также запорную арматуру. Именно поэтому в многоэтажных домах используется такой тип конструкции – он контролирует температуру автоматически.

Разбор схемы

Как вы поняли, узел состоит из фильтров, элеватора, контрольно-измерительных приборов и арматуры. Если вы планируете самостоятельно заниматься установкой этой системы, то стоит разобраться со схемой. Подходящим примером будет многоэтажка, в подвальном помещении которой всегда стоит элеваторный узел.

На схеме элементы системы отмечены цифрами:

1, 2 – этими цифрами обозначены подающий и обратный трубопроводы, которые установлены в теплоцентрали.

3,4 – подающий и обратный трубопроводы, установленные в системе отопления постройки (в нашем случае это многоэтажный дом).

5 – элеватор.

6 – под этой цифрой обозначены фильтры грубой очистки, которые также известны как грязевики.

7 – термометры

8 – манометры.

В стандартный состав этой системы отопления входят приборы контроля, грязевики, элеваторы и задвижки. В зависимости от конструкции и назначения, в узел могут добавляться дополнительные элементы.

Интересно! Сегодня в многоэтажных и многоквартирных домах можно встретить элеваторные узлы, которые оснащены электроприводом. Такая модернизация нужна для того, чтобы регулировать диаметр сопла. За счет электрического привода можно корректировать тепловой носитель.

Стоит сказать, что с каждым годом коммунальные услуги дорожают, это касается и частных домов. В связи с этим производители систем снабжают их устройствами, направленными на сбережение энергии. К примеру, теперь в схеме могут присутствовать регуляторы расхода и давления, циркуляционные насосы, элементы защиты труб и очистки воды, а также автоматика, направленная на поддержание комфортного режима.

Также в современных системах может быть установлен узел учета тепловой энергии. Из названия можно понять, что он отвечает за учет потребления тепла в доме. Если это устройство отсутствует, то не будет видна экономия. Большинство владельцев частных домов и квартир стремятся поставить счетчики на электроэнергию и воду, ведь с ними платить приходится значительно меньше.

Характеристики узла и особенности работы

По схемам можно понять, что элеватор в системе нужен для охлаждения перегретого теплоносителя. В некоторых конструкциях присутствует элеватор, который может и нагревать воду. Особенно такая система отопления актуальна в холодных регионах. Элеватор в этой системе запускается только тогда, когда остывшая жидкость смешивается с горячей водой, поступающей из подающей трубы. Схема. Под номером «1» обозначена подающая линия тепловой сети. 2 – это обратная линия сети. Под цифрой «3» обозначен элеватор, 4 – регулятор расхода, 5 – местная система отопления.

По этой схеме можно понять, что узел значительно повышает эффективность работы всей системы отопления в доме. Он работает одновременно как циркуляционный насос и смеситель. Что касается стоимости, то обойдется узел достаточно дешево, особенно тот вариант, который работает без электроэнергии.

Но любая система имеет и недостатки, не стал исключением:

  • Для каждого элемента элеватора нужны отдельные расчеты.
  • Перепады компрессии не должны превышать 0,8-2 Бар.
  • Отсутствие возможности контролировать высокую температуру.

Как устроен элеватор

В последнее время элеваторы появились в коммунальном хозяйстве. Почему же выбрали именно это оборудование? Ответ прост: элеваторы остаются стабильными даже в том случае, когда в сетях происходят перепады гидравлического и теплового режимов. Состоит элеватор из нескольких частей – камеры разряжения, струйного устройства и сопла. Также можно услышать про «обвязку элеватора» – речь идет о запорной арматуры, а также измерительных приборов, которые позволяют поддерживать нормальную работу всей системы.

Как было упомянуто выше, сегодня используются элеваторы, оснащенные электроприводом. За счет электрического привода механизм автоматически контролирует диаметр сопла, как результат, в системе поддерживается температура. Использование таких элеваторов способствует уменьшению счетов за электроэнергию.

Конструкция оснащена механизмом, который вращается за счет электрического привода. В более старых версиях используется зубчатый валик. Предназначен механизм для того, чтобы дроссельная игла можно двигать в продольном направлении. Таким образом меняется диаметр сопла, после чего можно изменить расход теплового носителя. За счет этого механизма расход сетевой жидкости можно снизить до минимума или повысить на 10-20%.

Возможные неисправности

Частой неисправностью можно назвать механическую поломку элеватора. Это может произойти из-за увеличения диаметра сопла, дефектов запорной арматуры или засорения грязевиков. Понять, что элеватор вышел из строя, довольно просто – появляются ощутимые перепады температуры теплового носителя после и до прохода через элеватор. В случае, если температура небольшая, то устройство просто засорилось. При больших перепадах требуется ремонт элеватора. В любом случае, при появлении неисправности требуется диагностика.

Сопло элеватора довольно часто засоряется, особенно в тех местах, где вода содержит множество добавок. Этот элемент можно демонтировать и прочистить. В случае, когда увеличился диаметра сопла, необходима корректировка или полная замена этого элемента.

К остальным неисправностям можно отнести перегревы приборов, протечки и прочие дефекты, присущие трубопроводам. Что касается грязевика, то степень его засорения можно определить по показателям манометров. Если давление увеличивается после грязевика, то элемент нужно проверить.

Описание:

Такими мероприятиями являются установка автоматизированных узлов управления систем отопления (далее – АУУ) вместо тепловых или элеваторных узлов, установка балансировочных клапанов на стояках систем отопления и термостатических клапанов на подводках к отопительным приборам.

Ошибки при внедрении автоматизированных узлов управления систем отопления в Москве (2008–2009 годы)

А. М. Филиппов , начальник Инспекции по контролю за энергосбережением Государственной жилищной инспекции Москвы

С принятием Федерального закона от 23.11.2009 № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» возрастает значение энергосбережения в жилых зданиях, особенно мероприятий, позволяющих не только автоматизировать, но и снизить потребление тепловой энергии многоквартирными домами, а также оптимизировать распределение тепла между потребителями в доме. Такими мероприятиями являются установка автоматизированных узлов управления систем отопления (далее – АУУ) вместо тепловых или элеваторных узлов, установка балансировочных клапанов на стояках систем отопления и термостатических клапанов на подводках к отопительным приборам.

Предпосылки внедрения АУУ

Впервые понятие АУУ появилось еще в 1995 году, когда в МНИИТЭПе была разработана и утверждена концепция «Современные энергосберегающие системы теплоснабжения и отопления зданий в массовом строительстве Москвы» и программа ее реализации. В дальнейшем внедрение АУУ было прописано в новой редакции МГСН 2.01–99 «Энергосбережение в здании», затем 27 апреля 2002 года состоялось заседание Комплекса архитектуры города Москвы, на котором, кроме прочих, рассмотрели вопрос «О типовых технических решениях по оснащению строящихся жилых домов автоматизированными узлами управления систем отопления».

В 2008 году ГУП «МосжилНИИпроект» совместно с ООО «Данфосс» был составлен альбом «Автоматизированные узлы управления» с использованием технических решений типового проекта, а в мае 2008 года теплоснабжающая организация ОАО «МОЭК» провела два совещания с участием проектировочных и подрядных организаций по монтажу АУУ по вопросам проектирования и разработки технических условий для привязки типового проекта установки АУУ при капитальном ремонте жилых домов программы 2008–2014 годов.

С августа 2008 года началось массовое внедрение (монтаж) АУУ в жилых домах взамен элеваторных и тепловых узлов, и в настоящее время в Москве численность жилых домов с установленными АУУ достигает 1000 зданий, что составляет примерно 3 % жилых зданий города.

Принцип действия и преимущества применения АУУ

Что представляет из себя АУУ, устройство и принцип его действия описывались неоднократно в работах М. М. Грудзинского, С. И. Прижижецкого и В. Л. Грановского, в том числе в . Кроме того, аналогичный принцип работы оборудования используется в ЦТП ОАО «МОЭК» (ранее – в тепловых пунктах ГУП «Мосгортепло») в системе автоматического регулирования зависимой системы отопления (САРЗСО), но только для переходных режимов осенью и весной.

Если коротко, то АУУ – это совокупность устройств и оборудования, обеспечивающих автоматическое регулирование температуры и расхода теплоносителя на вводе в каждое здание точно в соответствии с заданным для этого здания температурным графиком или в соответствии с потребностями жителей.

К преимуществу АУУ в сравнении с тепловыми и элеваторными узлами, имеющими фиксированное сечение проходного отверстия (сопла элеватора, дроссельной диафрагмы), через которое теплоноситель поступает во внутридомовую систему отопления, относится возможность изменения количества подаваемого теплоносителя в зависимости от температуры воды в подающем и обратном трубопроводах системы отопления с коррекцией по температуре наружного воздуха в соответствии с температурным графиком.

В отличие от элеваторных узлов, устанавливаемых на каждой секции дома, АУУ монтируется, как правило, один на здание (если в доме 2 тепловых ввода, то устанавливаются 2 АУУ), при этом присоединение выполняется после узла учета тепловой энергии системы отопления (при его наличии).

Принципиальная схема и вид АУУ в аксонометрии представлена на рис. 1, 2 (по материалам ООО «Данфосс»). Возможны конструктивные варианты, обусловленные схемой присоединения к тепловой сети, гидравлическими режимами на тепловом вводе, конкретной конструкцией системы отопления здания и условиями эксплуатации (всего 12 типовых решений).

Рисунок 2.

Примерная схема АУУ предусматривает: 1 – электронный блок (щит управления); 2 – датчик температуры наружного воздуха; 3 – датчики температур теплоносителя в подающем и обратном трубопроводах; 4 – клапан регулятора расхода с редукторным приводом; 5 – клапан регулятора перепада давления; 6 – фильтр; 7 – циркуляционный насос; 8 – обратный клапан.

Как видно из схемы, АУУ принципиально состоит из трех частей: сетевой, циркуляционной и электронной.

Сетевая часть АУУ включает клапан регулятора расхода теплоносителя с редукторным приводом, клапан регулятора перепада давления с пружинным регулирующим элементом и фильтр.

Циркуляционная часть АУУ включает циркуляционный (смесительный) насос и обратный клапан. В качестве насосов смешения устанавливаются два насоса фирмы Grundfos (или другие типы насосов, удовлетворяющие требованиям АУУ), которые работают попеременно по таймеру с цикличностью 6 ч. Контроль за работой насосов осуществляется по сигналу датчика перепада давлений, установленного на насосах.

Электронная часть АУУ включает электронный блок (щит управления), обеспечивающий автоматическое управление тепломеханическим и насосным оборудованием с целью поддержания заданного температурного графика и гидравлического режима в системе отопления здания, карту ECL (предназначена для программирования контроллера теплового режима), датчик температуры наружного воздуха (устанавливается на северной стороне фасада здания), датчики температур теплоносителя в подающем и обратном трубопроводах и редукторный электропривод клапана регулирования расхода теплоносителя в сетевой части АУУ.

Ошибки при внедрении АУУ

Основной темой данной статьи являются ошибки, допускаемые при планировании работ, проектировании и монтаже АУУ в Москве, которые свели на нет всю проделанную работу и не позволили получить запланированные показатели по энергоэффективности и энергосбережению. На протяжении полутора лет установленные АУУ практически не использовались по назначению либо использовались неэффективно, дорогостоящее оборудование зачастую простаивало в отключенном состоянии, а теплоноситель поступал во внутридомовые системы отопления через недемонтированные элеваторы.

Конечно, многие из ошибок в дальнейшем были исправлены, а работа АУУ налажена, однако ошибок можно было не допустить при правильной организации работ на всех стадиях процесса.

Так что же это были за ошибки?

1. На стадии планирования и организации работ.

При выборе технического решения, в нарушение требований МГСН 2.01–99 «Энергосбережение в зданиях» (п. 4.2.1.) не осуществлялось технико-экономическое сопоставление вариантов: 1) установка АУУ от распределительных сетей ЦТП или 2) устройство ИТП от городских магистральных теплопроводов и сетей водопровода. В результате при установке АУУ происходило дублирование функций оборудования, установленного в ЦТП, что противоречит «Правилам технической эксплуатации тепловых энергоустановок» Ростехнадзора РФ (п. 9.1.2.), а монтаж АУУ и балансировочных клапанов приводил к увеличению гидравлического сопротивления в системе и необходимости замены (реконструкции) тепломеханического оборудования ЦТП. Однако реконструкция ЦТП не предусматривалась, а АУУ внедрялись не кустовым методом, начиная с концевых домов, а некомплексно, только в отдельных зданиях в начале или середине привязки к ЦТП. Как следствие, некомплексная установка АУУ нарушала установившийся гидравлический и тепловой баланс во внутриквартальных тепловых сетях, приводила к ухудшению работы систем отопления большинства присоединенных строений и вызывала необходимость проведения дорогостоящей тепловой наладки (с расчетом диаметров сопел элеваторов и дроссельных диафрагм, их установкой на вводно-распределительных узлах и последующей корректировкой (заменой) в процессе эксплуатации в отопительный период.

2. На стадии проектирования:

– отсутствовали рабочие проекты, нередко вместо рабочих проектов использовались выкопировки из типового проекта без расчетов, подбора и привязки оборудования к местным условиям, что приводило к ошибочным решениям при выборе и установке оборудования и, как следствие, к нарушениям режимов теплоснабжения при его работе;

– выбранные схемы монтажа АУУ не соответствовали требуемым, что сразу негативно отражалось на теплоснабжении. Например, в трех жилых домах ЗАО в результате демонтажа элеваторного узла и применения в зависимой системе отопления схемы АУУ, предназначенной для независимых систем без узла смешения, был нарушен проектный температурный график работы системы (95–70 °С) и в отопительные приборы поступил первичный перегретый теплоноситель с температурным графиком (150/70 °С), что привело к перегреву ближайших по ходу теплоносителя жилых помещений и к нарушению циркуляции теплоносителя в концевых стояках (недогреву помещений, расположенных на концевых стояках). Эксплуатация системы в таком режиме была чревата ожогами жителей при прикосновении к приборам и трубопроводам. Только своевременное вмешательство помогло устранить эту ошибку до наступления холодов;

– выданные технические условия (ТУ) не соответствовали фактическим параметрам: например, в ТУ и проекте указывался график 150/70 °С вместо фактического 105/70 °С, что повлекло неправильный выбор схемы АУУ. Также при выдаче технических условий для АУУ не учитывалось то, что в ходе капитального ремонта системы отопления реконструировались (изменялись схемы с однотрубной на двухтрубную, диаметры разводящих трубопроводов и стояков, площади нагрева отопительных приборов и т. п.), при этом расчет АУУ производился для системы отопления до реконструкции.

3. На стадии монтажа и ввода в эксплуатацию:

– ошибочно было выбрано время для монтажа: АУУ зачастую монтировались уже в зимний период после окончания других работ, что приводило к жалобам жителей на несвоевременный пуск тепла, частые отключения отопления, к нарушениям температурного режима;

– напрасно отказывались от установки АУУ в случаях, когда в ходе капитального ремонта на стояках систем ЦО были установлены балансировочные клапаны. Их установка приводила к резкому увеличению гидравлического сопротивления в системах, а при отсутствии АУУ с насосным оборудованием и непроведении работ по замене насосов в ЦТП в таких жилых домах и соседних по привязке домах в отопительный период сразу возникали проблемы с теплоснабжением;

– датчики температуры наружного воздуха монтировались не на северной стороне здания, что приводило к некорректной настройке теплового режима из-за влияния солнечной радиации на датчик (его нагрев);

– работа АУУ осуществлялась во внештатном ручном режиме и не была переведена в автоматический режим;

– отсутствовали документы и карты ECL в связи с тем, что монтажная организация не передала их управляющей компании;

– отсутствовало резервное питание АУУ, что в случае отключения электроэнергии могло привести к остановке системы ЦО;

– не проводились регулировочно-наладочные работы и обесшумливающие мероприятия;

– отсутствовало техобслуживание АУУ.

Вследствие указанных ошибок и нарушений, в домах с установленными АУУ возникали многочисленные жалобы жителей на непрогревы системы отопления и шум от работы оборудования.

Все описанное выше стало возможным из-за плохой организации работ, отсутствия должного контроля со стороны заказчика за всеми стадиями процесса внедрения АУУ. Автор надеется, что опубликованная статья поможет избежать подобных ошибок в дальнейшем как в Москве, так и в других городах.

При внедрении АУУ необходимо четко организовать работу проектных организаций, соответствующих строительно-монтажных и ремонтно-эксплуатационных служб, тщательно проверять выданные технические условия на соответствие фактическим данным, вести технический надзор на каждой стадии работ и сразу же после завершения монтажа приступать к техобслуживанию АУУ силами специализированной организации. Иначе простой дорогостоящего оборудования АУУ или его неквалифицированное обслуживание приведет к выходу из строя, утрате техдокументации и к прочим негативным последствиям.

Эффективное применение АУУ

Применение АУУ наиболее эффективно в следующих случаях:

– в домах с абонированными элеваторными узлами системы отопления, непосредственно присоединенными к городским магистральным тепловым сетям;

– в концевых домах по привязке к ЦТП с недостаточным перепадом давления в системе ЦО с обязательной установкой насосов ЦО;

– в домах с газовыми водонагревателями (с децентрализованным горячим водоснабжением) и центральным отоплением.

Устанавливать АУУ следует комплексно, кустовым методом, охватывая все без исключения жилые и нежилые строения, присоединенные к ЦТП.

Монтаж и сдача-приемка в эксплуатацию системы отопления и оборудования АУУ должны вестись одновременно.

Следует отметить, что наряду с установкой АУУ, достаточно эффективными являются следующие мероприятия:

– перевод ЦТП с зависимой схемой присоединения систем отопления на независимую с установкой в тепловом пункте мембранного расширительного бака;

– установка в ЦТП с зависимой схемой присоединения оборудования автоматического регулирования отпуска тепла (САР ЗСО), аналогичного АУУ;

– наладка внутриквартальных сетей центрального отопления с установкой расчетных сопел элеваторов и дроссельных диафрагм на вводно-распределительных узлах зданий;

– перевод тупиковых систем горячего водоснабжения на циркуляционные схемы.

В целом, эксплуатация образцовых АУУ показала, что использование АУУ в совокупности с балансировочными клапанами на стояках системы ЦО, термостатическими вентилями на каждом отопительном приборе и проведением утеплительных мероприятий позволяет экономить до 25–37 % тепловой энергии и обеспечивать комфортные условия проживания в каждом помещении.

Литература

1. Грудзинский М. М., Прижижецкий С. И. Энергоэффективные системы отопления // «АВОК». – 1999. – № 6.

2. Грановский В. Л., Прижижецкий С. И. Система отопления жилых зданий массового строительства и реконструкции с комплексным автоматизированием теплопотребления // «АВОК». – 2002. – № 5.

Автоматизированный узел управления (АУУ) системы отопления - это разновидность индивидуального теплового пункта, который предназначен для автоматического регулирования параметров теплоносителя (давление, температура) в системе отопления зданий в зависимости от температуры наружного воздуха и условий эксплуатации.

АУУ состоит из насоса смешения, электронного регулятора температуры, который поддерживает расчетный температурный график теплоносителя, регулирующего клапана и регулятора перепада давления и расхода. Конструктивно АУУ представляет собой блок на металлической опорной раме, на которой установлены: трубопроводные блоки, насос, регулирующая арматура, электропривода, автоматика, контрольно-измерительные приборы (манометры, термометры), фильтры, грязевики.

Принцип работы АУУ следующий: при условии, когда температура теплоносителя в прямом трубопроводе тепловой сети превышает требуемую (по температурному графику), электронный регулятор включает насос смешения, который добавляет в систему отопления теплоноситель с обратного трубопровода (т.е. после системы отопления) поддерживая требуемую температуру, предотвращая «перетопы» в здании. В это время гидравлический регулятор прикрывается, уменьшая тем самым подачу сетевой воды.

Снижение температуры воздуха в помещениях зданий в ночное время не ухудшает условия санитарно-гигиенических требований, что в свою очередь снижает потребление тепловой энергии и ведет к ее экономии. Возможная экономия тепловой энергии при автоматическом регулировании составляет до 25 % годового расхода.

Рис. 1. Принципиальная схема автоматизированного узла управления отопления.

Теперь давайте проведем небольшой расчет эффекта от внедрения автоматизированного узла управления в офисном здании.

В нашем примере планируется модернизация системы отопления, путем установки АУУ, в соответствии с действующими нормами и правилами.

Расчет экономии тепловой энергии при внедрении АУУ

Экономия тепловой энергии (ΔQ) при установке АУУ определяется по выражению:

ΔQ= ΔQ п +ΔQ н +ΔQ с +ΔQ и, (1)

ΔQ п - экономия тепловой энергии от устранения перетопа зданий в осенне-весенний период, %;

ΔQ н - экономия тепловой энергии от снижения ее отпуска в ночное время, %;

ΔQ с - экономия тепловой энергии от снижения ее отпуска в выходные дни, %;

ΔQ и - экономия тепловой энергии за счет учета теплопоступлений от солнечной радиации и бытовых тепловыделений, %.

Экономия тепловой энергии ΔQп от устранения перетопа зданий в осенне-весенний период отопительного сезона, когда тепловой источник для удовлетворения нужд горячего водоснабжения отпускает теплоноситель с постоянной температурой, превышающей потребную для закрытых систем отопления (см. рис. 2. Температурный график 130-70) ориентировочно может быть определена по таблице №1.

Рис. 2. Температурный график 130-70.

Таблица № 1.

Относительную продолжительность осенне-весеннего периода, для различных регионов (с различными расчетными температурами наружного воздуха в отопительный период), необходимую для определения AQ п, можно найти по табл. № 2.

Таблица №2. Относительная продолжительность осенне-весеннего периода при различных расчетных температурах наружного воздуха за отопительный период.

Экономия теплоэнергии AQ н от снижения ее отпуска в ночное время оп­ределяется по выражению:

где а - продолжительность снижения отпуска теплоты в ночное время, ч/сут.;

Δt нр в - снижение температуры воздуха в помещениях в нерабочее время, °С;

t Р в - усредненная расчетная температура воздуха в помещениях, °С. Выбирается по СНиП 2.04.05-86 "Отопление, вентиляция и кондиционирование. Нормы проектирования".

t ср н - средняя температура наружного воздуха за отопительный сезон, °С. Вы­бирается по СНиП 2.04.05-86.

Для жилых зданий: снижение отпуска тепла рекомендуется производить с 21 ч. Через а часов регулятор должен включить отопление на расход теплоты, обеспечивающий восстановление температуры до нормальной. Нормальная тем­пература должна быть достигнута к 6-7 ч утра. Наиболее целесообразное снижение температуры = 2 °С (с = 20 °С до 18 °С). Для ориентировочных расчетов можно принять а = 6-7 ч.

Для административных зданий: продолжительность снижения отпуска тепла а определяется режимом работы здания, для ориентировочных расчетов можно принять а = 8-9 ч. Наиболее целесообразная величина снижения темпера­туры АС = 2-4 °С. При более глубоком снижении температуры необходимо учи­тывать возможности теплоисточника быстро увеличить отпуск тепла при резком снижении температуры наружного воздуха. В любом случае, значение температуры в период ночного снижения расхода теплоты в общественных зданиях должно обеспечить отсутствие выпадения конденсата на стенах ночью.

Экономия теплоэнергии ΔQс от снижения ее отпуска в выходные дни оп­ределяется по выражению (3):

где b - продолжительность снижения отпуска теплоты в нерабочие дни, сут./нед.

(при 5-ти дневной рабочей неделе b = 2, при 6-ти дневной b = 1).

Величина снижения температуры воздуха в помещениях в нерабочее время выбирается в соответствии с рекомендациями к формуле (2).

Экономия теплоэнергии ΔQ и за счет учета теплопоступлений от солнечной радиации и бытовых тепловыделений определяется по выражению (4):

где Δt и в - усредненное за отопительный сезон превышение температуры воздуха в помещениях сверх комфортной из-за теплопоступлений от солнечной радиации и бытовых тепловыделений, °С. Ориентировочно можно принять Δt и в = 1-1,5 °С (по опытным данным).

Пример расчета:

Офисное здание в Москве. Режим работы - 5 дней в неделю, с 9 00 до 18 00 .

t Р в = 18 °С, t ср н = -3,1 °С, t р н = -28 °С (по СНиП 2.04.05-86). Предполагается снижение температуры воздуха в помещениях на Δtнр в = 3 °С в ночные часы = 8 ч/сут.) и выходные дни (b = 2 сут./нед.). В этом случае:

Таблица №3. Расчет экономического эффекта от внедрения АУУ.

Параметры

Обозначение

Ед. измерения

Значение

Экономия тепловой энергии за счет установки АУУ

ΔQ=ΔQ н +ΔQ с +ΔQ и

Продолжительность снижения отпуска тепла в ночное время

Продолжительность снижения отпуска тепла в нерабочие дни

Снижение температуры воздуха в помещениях в нерабочее время

Усредненная расчетная температура воздуха в помещениях

Определяется по СНиП 2.04.05-91* "Отопление, вентиляция и кондиционирование"

Средняя температура наружного воздуха за отопительный сезон

Определяется по СНиП 23-01-99 "Строительная климатология"

Усредненное за отопительный сезон превышение температуры воздуха в помещениях сверх комфортной из-за теплопоступлений от солнечной радиации и бытовых тепловыделений

Экономия тепловой энергии от устранения перетопа зданий в осенне-весенний период отопительного сезона

ΔQ п

Экономия теплоэнергии от снижения ее отпуска в ночное время

ΔQн=((a·Δtнрв)/(24·(tрв-tсрн))*100

Экономия теплоэнергии от снижения ее отпуска в выходные дни

ΔQн=((b·Δtнрв)/(24·(tрв-tсрн))*100

Экономия теплоэнергии за счет учета теплопоступлений от солнечной радиации и бытовых тепловыделений

ΔQн=(Δtив)/(tрв-tсрн)*100

Таким образом, экономия тепловой энергии от установки АУУ составит 11,96 % от годового теплопотребления на отопление .

Автоматизированный узел управления системы отопления является разновидностью индивидуального теплового пункта и предназначен для управления параметрами теплоносителя в системе отопления в зависимости от температуры наружного воздуха и условий эксплуатации зданий.

Узел состоит из корректирующего насоса, электронного регулятора температуры, поддерживающего заданный температурный график и регуляторов перепада давления и расхода. А конструктивно - это смонтированные на металлической опорной раме трубопроводные блоки, включающие насос, регулирующую арматуру, элементы электроприводов и автоматики, контрольно-измерительные приборы, фильтры, грязевики.

В автоматизированном узле управления установлены регулирующие элементы фирмы «Danfoss», насос - фирмы "Grundfoss". Комплектация узлов управления производится с учетом рекомендаций специалистов фирмы «Danfoss», которые оказывают консультационные услуги при разработке данных узлов.

Узел работает следующим образом. При наступлении условий, когда температура в тепловой сети превышает требуемую, электронный регулятор включает насос, а тот добавляет в систему отопления столько охлажденного теплоносителя из обратного трубопровода, сколько необходимо для поддержания заданной температуры. Гидравлический регулятор в свою очередь прикрывается, уменьшая подачу сетевой воды.

Режим работы автоматизированного узла управления в зимнее время круглосуточный, температура поддерживается в соответствии с температурным графиком с коррекцией по температуре обратной воды.

По желанию заказчика может быть предусмотрен режим снижения температуры в отапливаемых помещениях в ночное время, в выходные и праздничные дни, что дает значительную экономию.

Снижение температуры воздуха в жилых зданиях в ночное время на 2-3 °С не ухудшает санитарно-гигиенические условия и в то же время дает экономию в размере 4-5%. В производственных и административно-общественных зданиях экономия теплоты за счет снижения температуры в нерабочее время достигается в еще большей степени. Температура в нерабочее время может поддерживаться на уровне 10-12 °С. Общая экономия тепла при автоматическом регулировании может составить до 25% годового расхода. В летний период автоматизированный узел не работает.

Энергосбережение особенно актуально, т.к. именно при внедрении энергоэффективных мероприятий у потребителя достигается максимальная экономия.

Номенклатурный ряд узлов управления системой отопления

Q, Гкал/ч dтруб., мм
1 0,15 50
2 0,30 50
3 0,45 65
4 0,60 80
5 0,75 80
6 0,90 80
7 1,05 80
8 1,20 100
9 1,35 100
10 1,50 100


Поделиться